A Fine-Grained System Driven of Attacks Over Several New Representation Techniques Using Machine Learning

被引:3
|
作者
Al Ghamdi, Mohammed A. [1 ]
机构
[1] Umm Al Qura Univ, Coll Comp & Informat Syst, Comp Sci Dept, Mecca 24382, Saudi Arabia
来源
IEEE ACCESS | 2023年 / 11卷
关键词
Machine learning; Computational intelligence; Intrusion detection; Neural networks; computational intelligence; intrusion detection system; deep neural network; convolutional neural network; support vector machine;
D O I
10.1109/ACCESS.2023.3307018
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Machine Learning (ML) techniques, especially deep learning, are crucial to many contemporary real world systems that use Computational Intelligence (CI) as their core technology, including self-deriving vehicles, assisting machines, and biometric authentication systems. We encounter a lot of attacks these days. Drive-by-download is used to covertly download websites when we view them, and emails we receive often have malicious attachments. The affected hosts and networks sustain significant harm as a result of the infection. Therefore, identifying malware is crucial. Recent attacks, however, is designed to evade detection using Intrusion Detection System (IDS). It is essential to create fresh signatures as soon as new malware is found in order to stop this issue. Using a variety of cutting-edge representation methodologies, we develop attack taxonomy and examine it. 1) N-gram-based representation: In this tactic, we look at a number of random representations that consider a technique of sampling the properties of the graph. 2) Signature-based representation: This technique uses the idea of invariant representation of the graph, which is based on spectral graph theory. One of the main causes is that a ML system setup is rely on a number of variables, including the input dataset, ML architecture, attack creation process, and defense strategy. To find any hostile attacks in the network system, we employ IDS with Deep Neural Network (DNN). In conclusion, the efficacy and efficiency of the suggested framework with Convolutional Neural Network (CNN) and Support Vector Machine (SVM) are assessed using the assessment indicators, including throughput, latency rate, accuracy and precision. The findings of the suggested model with a detection rate of 93%, 14%, 95.63% and 95% in terms of throughput, latency rate, accuracy and precision, which is based on adversarial assault, were better and more effective than CNN and SVM models. Additionally at the end we contrast the performance of the suggested model with that of earlier research that makes use of the same dataset, NSL-KDD, as we do in our scenario.
引用
收藏
页码:96615 / 96625
页数:11
相关论文
共 50 条
  • [41] FedLVR: a federated learning-based fine-grained vehicle recognition scheme in intelligent traffic system
    Zeng J.
    Zhang K.
    Wang L.
    Li J.
    Multimedia Tools and Applications, 2023, 82 (24) : 37431 - 37452
  • [42] Forecasting the Bearing Capacity of the Driven Piles Using Advanced Machine-Learning Techniques
    Benbouras, Mohammed Amin
    Petrisor, Alexandru-Ionut
    Zedira, Hamma
    Ghelani, Laala
    Lefilef, Lina
    APPLIED SCIENCES-BASEL, 2021, 11 (22):
  • [43] Data-Driven Trend Forecasting in Stock Market Using Machine Learning Techniques
    Misra, Puneet
    Chaurasia, Siddharth
    JOURNAL OF INFORMATION TECHNOLOGY RESEARCH, 2020, 13 (01) : 130 - 149
  • [44] Detection of Distributed Denial of Service Attacks in SDN using Machine learning techniques
    Sudar, K. Muthamil
    Beulah, M.
    Deepalakshmi, P.
    Nagaraj, P.
    Chinnasamy, P.
    2021 INTERNATIONAL CONFERENCE ON COMPUTER COMMUNICATION AND INFORMATICS (ICCCI), 2021,
  • [45] Question Answering System using Machine Learning Techniques
    Dobrescu, Alexandra-Maria
    Radu, Serban
    VISION 2025: EDUCATION EXCELLENCE AND MANAGEMENT OF INNOVATIONS THROUGH SUSTAINABLE ECONOMIC COMPETITIVE ADVANTAGE, 2019, : 10226 - 10237
  • [46] ICMPv6-Based DoS and DDoS Attacks Detection Using Machine Learning Techniques, Open Challenges, and Blockchain Applicability: A Review
    Tayyab, Mohammad
    Belaton, Bahari
    Anbar, Mohammed
    IEEE ACCESS, 2020, 8 : 170529 - 170547
  • [47] LocAuth: A fine-grained indoor location-based authentication system using wireless networks characteristics
    Alawami, Mohsen A.
    Kim, Hyoungshick
    COMPUTERS & SECURITY, 2020, 89 (89)
  • [48] Resume Classification System using Natural Language Processing and Machine Learning Techniques
    Ali, Irfan
    Mughal, Nimra
    Khand, Zahid Hussain
    Ahmed, Javed
    Mujtaba, Ghulam
    MEHRAN UNIVERSITY RESEARCH JOURNAL OF ENGINEERING AND TECHNOLOGY, 2022, 41 (01) : 65 - 79
  • [49] Detecting DDoS Attacks Using Machine Learning Techniques and Contemporary Intrusion Detection Dataset
    Bindra, Naveen
    Sood, Manu
    AUTOMATIC CONTROL AND COMPUTER SCIENCES, 2019, 53 (05) : 419 - 428
  • [50] Analysis and Detection of DDoS Attacks on Cloud Computing Environment using Machine Learning Techniques
    Wani, Abdul Raoof
    Rana, Q. P.
    Saxena, U.
    Pandey, Nitin
    PROCEEDINGS 2019 AMITY INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE (AICAI), 2019, : 870 - 875