A Fine-Grained System Driven of Attacks Over Several New Representation Techniques Using Machine Learning

被引:3
|
作者
Al Ghamdi, Mohammed A. [1 ]
机构
[1] Umm Al Qura Univ, Coll Comp & Informat Syst, Comp Sci Dept, Mecca 24382, Saudi Arabia
来源
IEEE ACCESS | 2023年 / 11卷
关键词
Machine learning; Computational intelligence; Intrusion detection; Neural networks; computational intelligence; intrusion detection system; deep neural network; convolutional neural network; support vector machine;
D O I
10.1109/ACCESS.2023.3307018
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Machine Learning (ML) techniques, especially deep learning, are crucial to many contemporary real world systems that use Computational Intelligence (CI) as their core technology, including self-deriving vehicles, assisting machines, and biometric authentication systems. We encounter a lot of attacks these days. Drive-by-download is used to covertly download websites when we view them, and emails we receive often have malicious attachments. The affected hosts and networks sustain significant harm as a result of the infection. Therefore, identifying malware is crucial. Recent attacks, however, is designed to evade detection using Intrusion Detection System (IDS). It is essential to create fresh signatures as soon as new malware is found in order to stop this issue. Using a variety of cutting-edge representation methodologies, we develop attack taxonomy and examine it. 1) N-gram-based representation: In this tactic, we look at a number of random representations that consider a technique of sampling the properties of the graph. 2) Signature-based representation: This technique uses the idea of invariant representation of the graph, which is based on spectral graph theory. One of the main causes is that a ML system setup is rely on a number of variables, including the input dataset, ML architecture, attack creation process, and defense strategy. To find any hostile attacks in the network system, we employ IDS with Deep Neural Network (DNN). In conclusion, the efficacy and efficiency of the suggested framework with Convolutional Neural Network (CNN) and Support Vector Machine (SVM) are assessed using the assessment indicators, including throughput, latency rate, accuracy and precision. The findings of the suggested model with a detection rate of 93%, 14%, 95.63% and 95% in terms of throughput, latency rate, accuracy and precision, which is based on adversarial assault, were better and more effective than CNN and SVM models. Additionally at the end we contrast the performance of the suggested model with that of earlier research that makes use of the same dataset, NSL-KDD, as we do in our scenario.
引用
收藏
页码:96615 / 96625
页数:11
相关论文
共 50 条
  • [1] Diagnosing Machine Learning Pipelines with Fine-grained Lineage
    Zhang, Zhao
    Sparks, Evan R.
    Franklin, Michael J.
    HPDC'17: PROCEEDINGS OF THE 26TH INTERNATIONAL SYMPOSIUM ON HIGH-PERFORMANCE PARALLEL AND DISTRIBUTED COMPUTING, 2017, : 143 - 153
  • [2] On the Predictability of Fine-grained Cellular Network Throughput using Machine Learning Models
    Basit, Omar
    Phuc Dinh
    Khan, Imran
    Kong, Jonny
    Hu, Y. Charlie
    Koutsonikolas, Dimitrios
    Lee, Myungjin
    Liu, Chaoyue
    2024 IEEE 21ST INTERNATIONAL CONFERENCE ON MOBILE AD-HOC AND SMART SYSTEMS, MASS 2024, 2024, : 47 - 56
  • [3] Fine-grained affect detection in learners' generated content using machine learning
    Kolog, Emmanuel Awuni
    Devine, Samuel Nii Odoi
    Ansong-Gyimah, Kwame
    Agjei, Richard Osei
    EDUCATION AND INFORMATION TECHNOLOGIES, 2019, 24 (06) : 3767 - 3783
  • [4] Fine-grained affect detection in learners’ generated content using machine learning
    Emmanuel Awuni Kolog
    Samuel Nii Odoi Devine
    Kwame Ansong-Gyimah
    Richard Osei Agjei
    Education and Information Technologies, 2019, 24 : 3767 - 3783
  • [5] Machine learning approaches for prediction of fine-grained soils liquefaction
    Ozsagir, Mustafa
    Erden, Caner
    Bol, Ertan
    Sert, Sedat
    Ozocak, Askin
    COMPUTERS AND GEOTECHNICS, 2022, 152
  • [6] A modular machine learning tool for holistic and fine-grained behavioral analysis
    Michelot, Bruno
    Corneyllie, Alexandra
    Thevenet, Marc
    Duffner, Stefan
    Perrin, Fabien
    BEHAVIOR RESEARCH METHODS, 2024, 57 (01)
  • [7] Compression Index Regression of Fine-Grained Soils with Machine Learning Algorithms
    Kim, Mintae
    Senturk, Muharrem A.
    Li, Liang
    APPLIED SCIENCES-BASEL, 2024, 14 (19):
  • [8] Fine-Grained Categorization Using a Mixture of Transfer Learning Networks
    Firsching, Justin
    Hashem, Sherif
    PROCEEDINGS OF THE FUTURE TECHNOLOGIES CONFERENCE (FTC) 2021, VOL 2, 2022, 359 : 151 - 158
  • [9] Development of a machine learning-based fine-grained risk stratification system for thyroid nodules using predefined clinicoradiological features
    Eun Ju Ha
    Jeong Hoon Lee
    Da Hyun Lee
    Dong Gyu Na
    Ji-hoon Kim
    European Radiology, 2023, 33 : 3211 - 3221
  • [10] Multiclassification of DDoS attacks using machine and deep learning techniques
    Bhatia, Rashmi
    Sharma, Rohini
    International Journal of Security and Networks, 2024, 19 (02) : 63 - 76