Euclidean Operator Radius Inequalities of a Pair of Bounded Linear Operators and Their Applications

被引:13
作者
Jana, Suvendu [1 ]
Bhunia, Pintu [2 ]
Paul, Kallol [2 ]
机构
[1] Mahisadal Girls Coll, Dept Math, Rangibasan 721628, West Bengal, India
[2] Jadavpur Univ, Dept Math, Kolkata 700032, West Bengal, India
来源
BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY | 2023年 / 54卷 / 01期
关键词
Euclidean operator radius; Numerical radius; Operator norm; Cartesian decomposition; Bounded linear operator; NUMERICAL RADIUS;
D O I
10.1007/s00574-022-00320-w
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We obtain several sharp lower and upper bounds for the Euclidean operator radius of a pair of bounded linear operators defined on a complex Hilbert space. As applications of these bounds we deduce a chain of new bounds for the classical numerical radius of a bounded linear operator which improve on the existing ones. In particular, we prove that for a bounded linear operator A, 1/4 parallel to A* A + AA* parallel to + mu/2 max{parallel to R(A)parallel to, parallel to F(A)parallel to} <= w(2) (A) <= w(2)(vertical bar R(A)vertical bar + i vertical bar F(A)vertical bar), where mu = vertical bar parallel to R (A)+ F(A)parallel to - parallel to R(A) - F(A)parallel to vertical bar. This improve the existing upper and lower bounds of the numerical radius, namely, 1/4 parallel to A* A + AA* parallel to + w(2) (A) <= 1/2 parallel to A* A + AA*parallel to.
引用
收藏
页数:14
相关论文
共 18 条
[1]  
Abramovich S., 2004, Bull. Math. Soc. Sci. Math. Roum, V47, P3
[2]   UPPER AND LOWER BOUNDS FOR THE NUMERICAL RADIUS WITH AN APPLICATION TO INVOLUTION OPERATORS [J].
Abu-Omar, Amer ;
Kittaneh, Fuad .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2015, 45 (04) :1055-1065
[3]   BOUNDS OF NUMERICAL RADIUS OF BOUNDED LINEAR OPERATORS USING t-ALUTHGE TRANSFORM [J].
Bag, Santanu ;
Bhunia, Pintu ;
Paul, Kallol .
MATHEMATICAL INEQUALITIES & APPLICATIONS, 2020, 23 (03) :991-1004
[4]  
Bhunia P., 2022, Funct. Anal. Appl.
[5]   Development of inequalities and characterization of equality conditions for the numerical radius [J].
Bhunia, Pintu ;
Paul, Kallol .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2021, 630 :306-315
[6]   Proper Improvement of Well-Known Numerical Radius Inequalities and Their Applications [J].
Bhunia, Pintu ;
Paul, Kallol .
RESULTS IN MATHEMATICS, 2021, 76 (04)
[7]   Furtherance of numerical radius inequalities of Hilbert space operators [J].
Bhunia, Pintu ;
Paul, Kallol .
ARCHIV DER MATHEMATIK, 2021, 117 (05) :537-546
[8]   New upper bounds for the numerical radius of Hilbert space operators [J].
Bhunia, Pintu ;
Paul, Kallol .
BULLETIN DES SCIENCES MATHEMATIQUES, 2021, 167
[9]   Numerical radius inequalities and its applications in estimation of zeros of polynomials [J].
Bhunia, Pintu ;
Bag, Santanu ;
Paul, Kallol .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2019, 573 :166-177
[10]  
Buzano ML., 1974, Sem. Mat. Univ. e Politec. Torino, V31, P405