Differentiation between multiple sclerosis and neuromyelitis optica spectrum disorder using a deep learning model

被引:19
作者
Seok, Jin Myoung [1 ]
Cho, Wanzee [2 ]
Chung, Yeon Hak [3 ,4 ]
Ju, Hyunjin [3 ,4 ]
Kim, Sung Tae [5 ]
Seong, Joon-Kyung [2 ,6 ,7 ]
Min, Ju-Hong [3 ,4 ,8 ]
机构
[1] Soonchunhyang Univ, Soonchunhyang Univ Hosp Cheonan, Dept Neurol, Coll Med, Cheonan, South Korea
[2] Korea Univ, Dept Artificial Intelligence, Seoul, South Korea
[3] Sungkyunkwan Univ, Samsung Med Ctr, Dept Neurol, Sch Med, Seoul, South Korea
[4] Samsung Med Ctr, Neurosci Ctr, Dept Neurol, Seoul, South Korea
[5] Sungkyunkwan Univ, Samsung Med Ctr, Dept Radiol, Sch Med, Seoul, South Korea
[6] Korea Univ, Sch Biomed Engn, Seoul, South Korea
[7] Korea Univ, Interdisciplinary Program Precis Publ Hlth, Seoul, South Korea
[8] Sungkyunkwan Univ, Samsung Adv Inst Hlth Sci & Technol SAIHST, Dept Hlth Sci & Technol, 50 Irwon dong, Seoul 135710, South Korea
基金
新加坡国家研究基金会;
关键词
MRI; DIAGNOSIS; LESIONS; NMO;
D O I
10.1038/s41598-023-38271-x
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Multiple sclerosis (MS) and neuromyelitis optica spectrum disorder (NMOSD) are autoimmune inflammatory disorders of the central nervous system (CNS) with similar characteristics. The differential diagnosis between MS and NMOSD is critical for initiating early effective therapy. In this study, we developed a deep learning model to differentiate between multiple sclerosis (MS) and neuromyelitis optica spectrum disorder (NMOSD) using brain magnetic resonance imaging (MRI) data. The model was based on a modified ResNet18 convolution neural network trained with 5-channel images created by selecting five 2D slices of 3D FLAIR images. The accuracy of the model was 76.1%, with a sensitivity of 77.3% and a specificity of 74.8%. Positive and negative predictive values were 76.9% and 78.6%, respectively, with an area under the curve of 0.85. Application of Grad-CAM to the model revealed that white matter lesions were the major classifier. This compact model may aid in the differential diagnosis of MS and NMOSD in clinical practice.
引用
收藏
页数:9
相关论文
共 45 条
[1]  
Ayyachamy S., 2019, SPIE, V10954
[2]   Brain and cord imaging features in neuromyelitis optica spectrum disorders [J].
Cacciaguerra, Laura ;
Meani, Alessandro ;
Mesaros, Sarlota ;
Radaelli, Marta ;
Palace, Jacqueline ;
Dujmovic-Basuroski, Irena ;
Pagani, Elisabetta ;
Martinelli, Vittorio ;
Matthews, Lucy ;
Drulovic, Jelena ;
Leite, Maria Isabel ;
Comi, Giancarlo ;
Filippi, Massimo ;
Rocca, Maria A. .
ANNALS OF NEUROLOGY, 2019, 85 (03) :371-384
[3]   Brain MRI characteristics in neuromyelitis optica spectrum disorders: A large multi-center retrospective study in China [J].
Cao, Guanmei ;
Duan, Yunyun ;
Zhang, Ningnannan ;
Sun, Jie ;
Li, Haiqing ;
Li, Yuxin ;
Li, Yongmei ;
Zeng, Chun ;
Han, Xuemei ;
Zhou, Fuqing ;
Huang, Muhua ;
Zhuo, Zhizheng ;
Haller, Sven ;
Liu, Yaou .
MULTIPLE SCLEROSIS AND RELATED DISORDERS, 2020, 46
[4]   Differentiating Multiple Sclerosis From AQP4-Neuromyelitis Optica Spectrum Disorder and MOG-Antibody Disease With Imaging [J].
Cortese, Rosa ;
Carrasco, Ferran Prados ;
Tur, Carmen ;
Bianchi, Alessia ;
Brownlee, Wallace ;
De Angelis, Floriana ;
de la Paz, Isabel ;
Grussu, Francesco ;
Haider, Lukas ;
Jacob, Anu ;
Kanber, Baris ;
Magnollay, Lise ;
Nicholas, Richard S. ;
Trip, Anand ;
Yiannakas, Marios ;
Toosy, Ahmed T. ;
Hacohen, Yael ;
Barkhof, Frederik ;
Ciccarelli, Olga .
NEUROLOGY, 2023, 100 (03) :E308-E323
[5]   Gray matter MRI differentiates neuromyelitis optica from multiple sclerosis using random forest [J].
Eshaghi, Arman ;
Wottschel, Viktor ;
Cortese, Rosa ;
Calabrese, Massimiliano ;
Sahraian, Mohammad Ali ;
Thompson, Alan J. ;
Alexander, Daniel C. ;
Ciccarelli, Olga .
NEUROLOGY, 2016, 87 (23) :2463-2470
[6]   Classification algorithms with multi-modal data fusion could accurately distinguish neuromyelitis optica from multiple sclerosis [J].
Eshaghi, Arman ;
Riyahi-Alam, Sadjad ;
Saeedi, Roghayyeh ;
Roostaei, Tina ;
Nazeri, Arash ;
Aghsaei, Aida ;
Doosti, Rozita ;
Ganjgahi, Habib ;
Bodini, Benedetta ;
Shakourirad, Ali ;
Pakravan, Manijeh ;
Ghana'ati, Hossein ;
Firouznia, Kavous ;
Zarei, Mojtaba ;
Azimi, Amir Reza ;
Sahraian, Mohammad Ali .
NEUROIMAGE-CLINICAL, 2015, 7 :306-314
[7]   FreeSurfer [J].
Fischl, Bruce .
NEUROIMAGE, 2012, 62 (02) :774-781
[8]  
Geraldes R, 2018, NAT REV NEUROL, V14, P199, DOI 10.1038/nrneurol.2018.14
[9]  
Ghosal P., 2019, 2019 Second International Conference on Advanced Computational and Communication Paradigms (ICACCP), P1
[10]   Object detection via a multi-region & semantic segmentation-aware CNN model [J].
Gidaris, Spyros ;
Komodakis, Nikos .
2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, :1134-1142