Decoding the Fundamental Drivers of Phylodynamic Inference

被引:2
|
作者
Featherstone, Leo A. [1 ]
Duchene, Sebastian [1 ]
Vaughan, Timothy G. [2 ,3 ]
机构
[1] Univ Melbourne, Peter Doherty Inst Infect & Immun, Dept Microbiol & Immunol, Melbourne, Vic, Australia
[2] Swiss Fed Inst Technol, Dept Biosyst Sci & Engn, Basel, Switzerland
[3] Swiss Inst Bioinformat, Lausanne, Switzerland
基金
英国医学研究理事会; 澳大利亚研究理事会;
关键词
phylodynamics; birth-death model; Bayesian phylogenetics;
D O I
10.1093/molbev/msad132
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Despite its increasing role in the understanding of infectious disease transmission at the applied and theoretical levels, phylodynamics lacks a well-defined notion of ideal data and optimal sampling. We introduce a method to visualize and quantify the relative impact of pathogen genome sequence and sampling times-two fundamental sources of data for phylodynamics under birth-death-sampling models-to understand how each drives phylodynamic inference. Applying our method to simulated data and real-world SARS-CoV-2 and H1N1 Influenza data, we use this insight to elucidate fundamental trade-offs and guidelines for phylodynamic analyses to draw the most from sequence data. Phylodynamics promises to be a staple of future responses to infectious disease threats globally. Continuing research into the inherent requirements and trade-offs of phylodynamic data and inference will help ensure phylodynamic tools are wielded in ever more targeted and efficient ways.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Eight challenges in phylodynamic inference
    Frost, Simon D. W.
    Pybus, Oliver G.
    Gog, Julia R.
    Viboud, Cecile
    Bonhoeffer, Sebastian
    Bedford, Trevor
    EPIDEMICS, 2015, 10 : 88 - 92
  • [2] Phylodynamic Inference for Structured Epidemiological Models
    Rasmussen, David A.
    Volz, Erik M.
    Koelle, Katia
    PLOS COMPUTATIONAL BIOLOGY, 2014, 10 (04)
  • [3] Bayesian phylodynamic inference with complex models
    Volz, Erik M.
    Siveroni, Igor
    PLOS COMPUTATIONAL BIOLOGY, 2018, 14 (11)
  • [4] Phylodynamic Inference across Epidemic Scales
    Volz, Erik M.
    Romero-Severson, Ethan
    Leitner, Thomas
    MOLECULAR BIOLOGY AND EVOLUTION, 2017, 34 (05) : 1276 - 1288
  • [5] PHYLODYN: an R package for phylodynamic simulation and inference
    Karcher, Michael D.
    Palacios, Julia A.
    Lan, Shiwei
    Minin, Vladimir N.
    MOLECULAR ECOLOGY RESOURCES, 2017, 17 (01) : 96 - 100
  • [6] Quantifying and Mitigating the Effect of Preferential Sampling on Phylodynamic Inference
    Karcher, Michael D.
    Palacios, Julia A.
    Bedford, Trevor
    Suchard, Marc A.
    Minin, Vladimir N.
    PLOS COMPUTATIONAL BIOLOGY, 2016, 12 (03)
  • [7] Phylodynamic Inference of Bacterial Outbreak Parameters Using Nanopore Sequencing
    Steinig, Eike
    Duchene, Sebastian
    Aglua, Izzard
    Greenhill, Andrew
    Ford, Rebecca
    Yoannes, Mition
    Jaworski, Jan
    Drekore, Jimmy
    Urakoko, Bohu
    Poka, Harry
    Wurr, Clive
    Ebos, Eri
    Nangen, David
    Manning, Laurens
    Laman, Moses
    Firth, Cadhla
    Smith, Simon
    Pomat, William
    Tong, Steven Y. C.
    Coin, Lachlan
    McBryde, Emma
    Horwood, Paul
    MOLECULAR BIOLOGY AND EVOLUTION, 2022, 39 (03)
  • [8] Online Bayesian Phylodynamic Inference in BEAST with Application to Epidemic Reconstruction
    Gill, Mandev S.
    Lemey, Philippe
    Suchard, Marc A.
    Rambaut, Andrew
    Baele, Guy
    MOLECULAR BIOLOGY AND EVOLUTION, 2020, 37 (06) : 1832 - 1842
  • [9] Phylodynamic Inference with Kernel ABC and Its Application to HIV Epidemiology
    Poon, Art F. Y.
    MOLECULAR BIOLOGY AND EVOLUTION, 2015, 32 (09) : 2483 - 2495
  • [10] Model design for nonparametric phylodynamic inference and applications to pathogen surveillance
    Didelot, Xavier
    Franceschi, Vinicius
    Frost, Simon D. W.
    Dennis, Ann
    Volz, Erik M.
    VIRUS EVOLUTION, 2023, 9 (01)