Moderate Salinity Stress Increases the Seedling Biomass in Oilseed Rape (Brassica napus L.)

被引:12
作者
Chen, Beini [1 ,2 ]
Bian, Xiaobo [1 ]
Tu, Mengxin [2 ]
Yu, Tao [1 ]
Jiang, Lixi [2 ]
Lu, Yunhai [2 ]
Chen, Xiaoyang [1 ]
机构
[1] Jinhua Acad Agr Sci, Inst Crop Sci, Zhihe Rd 1158, Jinhua 321017, Peoples R China
[2] Zhejiang Univ, Inst Crop Sci, Yu Hang Tang Rd 866, Hangzhou 310058, Peoples R China
来源
PLANTS-BASEL | 2023年 / 12卷 / 08期
关键词
Brassica napus; salinity stress; seedling biomass; RNA-seq; shoot apical meristem; ARABIDOPSIS-THALIANA; EXPRESSION; TOLERANCE; QUALITY; GENE; DIFFERENTIATION; CONTRIBUTES; GERMINATION; ENVIRONMENT; RESPONSES;
D O I
10.3390/plants12081650
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Oilseed rape (Brassica napus L.), an important oil crop of the world, suffers various abiotic stresses including salinity stress during the growth stage. While most of the previous studies paid attention to the adverse effects of high salinity stress on plant growth and development, as well as their underlying physiological and molecular mechanisms, less attention was paid to the effects of moderate or low salinity stress. In this study, we first tested the effects of different concentrations of NaCl solution on the seedling growth performance of two oilseed rape varieties (CH336, a semi-winter type, and Bruttor, a spring type) in pot cultures. We found that moderate salt concentrations (25 and 50 mmol L-1 NaCl) can stimulate seedling growth by a significant increase (10 similar to 20%, compared to controls) in both above- and underground biomasses, as estimated at the early flowering stage. We then performed RNA-seq analyses of shoot apical meristems (SAMs) from six-leaf-aged seedlings under control (CK), low (LS, 25 mmol L-1), and high (HS, 180 mmol L-1) salinity treatments in the two varieties. The GO and KEGG enrichment analyses of differentially expressed genes (DEGs) demonstrated that such a stimulating effect on seedling growth by low salinity stress may be caused by a more efficient capacity for photosynthesis as compensation, accompanied by a reduced energy loss for the biosynthesis of secondary metabolites and redirecting of energy to biomass formation. Our study provides a new perspective on the cultivation of oilseed rape in saline regions and new insights into the molecular mechanisms of salt tolerance in Brassica crops. The candidate genes identified in this study can serve as targets for molecular breeding selection and genetic engineering toward enhancing salt tolerance in B. napus.
引用
收藏
页数:18
相关论文
共 71 条
[1]   Gain time to adapt: How sorghum acquires tolerance to salinity [J].
Abuslima, Eman ;
Kanbar, Adnan ;
Raorane, Manish L. ;
Eiche, Elisabeth ;
Junker, Bjoern H. ;
Hause, Bettina ;
Riemann, Michael ;
Nick, Peter .
FRONTIERS IN PLANT SCIENCE, 2022, 13
[2]   Gibberellin Signaling Controls Cell Proliferation Rate in Arabidopsis [J].
Achard, Patrick ;
Gusti, Andi ;
Cheminant, Soizic ;
Alioua, Malek ;
Dhondt, Stijn ;
Coppens, Frederik ;
Beemster, Gerrit T. S. ;
Genschik, Pascal .
CURRENT BIOLOGY, 2009, 19 (14) :1188-1193
[3]   Deciphering Molecular Mechanisms Involved in Salinity Tolerance in Guar (Cyamopsis tetragonoloba (L.) Taub.) Using Transcriptome Analyses [J].
Acharya, Biswa R. ;
Sandhu, Devinder ;
Duenas, Christian ;
Ferreira, Jorge F. S. ;
Grover, Kulbhushan K. .
PLANTS-BASEL, 2022, 11 (03)
[4]   HTSeq-a Python']Python framework to work with high-throughput sequencing data [J].
Anders, Simon ;
Pyl, Paul Theodor ;
Huber, Wolfgang .
BIOINFORMATICS, 2015, 31 (02) :166-169
[5]  
[Anonymous], 2017, J BIODIV ENV SCI
[6]   Salinity Stress Alters Root Morphology and Root Hair Traits in Brassica napus [J].
Arif, Mohammad Rashid ;
Islam, M. Thoihidul ;
Robin, Arif Hasan Khan .
PLANTS-BASEL, 2019, 8 (07)
[7]   Salinity induced physiological and biochemical changes in plants: An omic approach towards salt stress tolerance [J].
Arif, Yamshi ;
Singh, Priyanka ;
Siddiqui, Husna ;
Bajguz, Andrzej ;
Hayat, Shamsul .
PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2020, 156 :64-77
[8]   Balancing salinity stress responses in halophytes and non-halophytes: a comparison between Thellungiella and Arabidopsis thaliana [J].
Bartels, Dorothea ;
Dinakar, Challabathula .
FUNCTIONAL PLANT BIOLOGY, 2013, 40 (8-9) :819-831
[9]   Trimmomatic: a flexible trimmer for Illumina sequence data [J].
Bolger, Anthony M. ;
Lohse, Marc ;
Usadel, Bjoern .
BIOINFORMATICS, 2014, 30 (15) :2114-2120
[10]   Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome [J].
Chalhoub, Boulos ;
Denoeud, France ;
Liu, Shengyi ;
Parkin, Isobel A. P. ;
Tang, Haibao ;
Wang, Xiyin ;
Chiquet, Julien ;
Belcram, Harry ;
Tong, Chaobo ;
Samans, Birgit ;
Correa, Margot ;
Da Silva, Corinne ;
Just, Jeremy ;
Falentin, Cyril ;
Koh, Chu Shin ;
Le Clainche, Isabelle ;
Bernard, Maria ;
Bento, Pascal ;
Noel, Benjamin ;
Labadie, Karine ;
Alberti, Adriana ;
Charles, Mathieu ;
Arnaud, Dominique ;
Guo, Hui ;
Daviaud, Christian ;
Alamery, Salman ;
Jabbari, Kamel ;
Zhao, Meixia ;
Edger, Patrick P. ;
Chelaifa, Houda ;
Tack, David ;
Lassalle, Gilles ;
Mestiri, Imen ;
Schnel, Nicolas ;
Le Paslier, Marie-Christine ;
Fan, Guangyi ;
Renault, Victor ;
Bayer, Philippe E. ;
Golicz, Agnieszka A. ;
Manoli, Sahana ;
Lee, Tae-Ho ;
Vinh Ha Dinh Thi ;
Chalabi, Smahane ;
Hu, Qiong ;
Fan, Chuchuan ;
Tollenaere, Reece ;
Lu, Yunhai ;
Battail, Christophe ;
Shen, Jinxiong ;
Sidebottom, Christine H. D. .
SCIENCE, 2014, 345 (6199) :950-953