Double-stretching as an effective and generalizable strategy towards thinner nanofibers in solution blow spinning

被引:1
作者
Zhang, Baopu [1 ,2 ]
Li, Ziwei [1 ]
Cheng, Zekun [1 ]
Li, Lei [1 ]
Yang, Chong [1 ]
Wang, Haiyang [1 ]
Wu, Hui [1 ]
机构
[1] Tsinghua Univ, Sch Mat Sci & Engn, State Key Lab Ceram & Fine Proc, Beijing 100084, Peoples R China
[2] MIT, Dept Chem Engn, Cambridge, MA 02139 USA
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
nanofibers; solution blow spinning; double-stretching; computational fluid dynamics; POLYMER; PERFORMANCE; FABRICATION; MODEL;
D O I
10.1007/s12274-022-5198-1
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Solution blow spinning (SBS) applies high-speed airflow to prepare fibers by generating a strong stretching force. It has the advantages of scalable production, tailorable morphologies, and wide applicability. Yet, the SBS strategy can hardly prepare fibers down to the sub-100 nanometers, which limits its performance in demanding applications. Herein, we overcome the limitation of SBS by introducing a second airflow. This novel strategy is termed double-stretching SBS (DS-SBS) because an extra stretching force is exerted on the fiber when it converges with the second airflow. Polyamide6 nanofibers with an average diameter of 80 nm are successfully prepared with the DS-SBS strategy, while the SBS strategy could only prepare submicron fibers with an average diameter of 120 nm. Further, the generality of the DS-SBS strategy to reduce fiber diameter is verified on numerous solute-solvent pairs.
引用
收藏
页码:5709 / 5714
页数:6
相关论文
共 33 条
[1]   Solution Blow Spinning of High-Performance Submicron Polyvinylidene Fluoride Fibres: Computational Fluid Mechanics Modelling and Experimental Results [J].
Atif, Rasheed ;
Combrinck, Madeleine ;
Khaliq, Jibran ;
Hassanin, Ahmed H. ;
Shehata, Nader ;
Elnabawy, Eman ;
Shyha, Islam .
POLYMERS, 2020, 12 (05)
[2]   Theoretical Model of Single Fiber Efficiency and the Effect of Microstructure on Fibrous Filtration Performance: A Review [J].
Bai, He ;
Qian, Xiaoming ;
Fan, Jintu ;
Shi, Yunlong ;
Duo, Yongchao ;
Guo, Changsheng ;
Wang, Xiaobo .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2021, 60 (01) :3-36
[3]   Nanofibers as new-generation materials: From spinning and nano-spinning fabrication techniques to emerging applications [J].
Barhoum, Ahmed ;
Pal, Kaushik ;
Rahier, Hubert ;
Uludag, Hasan ;
Kim, Ick Soo ;
Bechelany, Mikhael .
APPLIED MATERIALS TODAY, 2019, 17 :1-35
[4]   Lithium-ion battery separators based on electrospun PVDF: A review [J].
Bicy, K. ;
Gueye, Amadou Belal ;
Rouxel, Didier ;
Kalarikkal, Nandakumar ;
Thomas, Sabu .
SURFACES AND INTERFACES, 2022, 31
[5]   Production of highly aligned microfiber bundles from polymethyl methacrylate via stable jet electrospinning for organic solid-state lasers [J].
Christ, Henrik-Alexander ;
Ang, Pen Yiao ;
Li, Fuzhao ;
Johannes, Hans-Hermann ;
Kowalsky, Wolfgang ;
Menzel, Henning .
JOURNAL OF POLYMER SCIENCE, 2022, 60 (04) :715-725
[6]   Solution blow spinning-polyacrylonitrile-assisted cellulose acetate nanofiber membrane [J].
Dadol, Glebert C. ;
Lim, Kramer Joseph A. ;
Cabatingan, Luis K. ;
Tan, Noel Peter B. .
NANOTECHNOLOGY, 2020, 31 (34)
[7]  
Formhals A., 1934, U.S. patent, Patent No. [1,975,504, 1975504]
[8]   Materials and technologies for multifunctional, flexible or integrated supercapacitors and batteries [J].
Fu, Wenbin ;
Turcheniuk, Kostiantyn ;
Naumov, Olga ;
Mysyk, Roman ;
Wang, Fujia ;
Liu, Michael ;
Kim, Doyoub ;
Ren, Xiaolei ;
Magasinski, Alexandre ;
Yu, Minghao ;
Feng, Xinliang ;
Wang, Zhong Lin ;
Yushin, Gleb .
MATERIALS TODAY, 2021, 48 :176-197
[9]   Nanofibers with diameter below one nanometer from electrospinning [J].
Jian, Shaoju ;
Zhu, Jia ;
Jiang, Shaohua ;
Chen, Shuiliang ;
Fang, Hong ;
Song, Yonghai ;
Duan, Gaigai ;
Zhang, Yongfan ;
Hou, Haoqing .
RSC ADVANCES, 2018, 8 (09) :4794-4802
[10]   Nanofiber technology: current status and emerging developments [J].
Kenry ;
Lim, Chwee Teck .
PROGRESS IN POLYMER SCIENCE, 2017, 70 :1-17