Inducing the Preferential Growth of Zn (002) Plane for Long Cycle Aqueous Zn-Ion Batteries

被引:248
作者
Zhang, Huangwei [1 ]
Zhong, Yun [1 ]
Li, Jianbo [1 ]
Liao, Yaqi [1 ]
Zeng, Jialiu [1 ]
Shen, Yue [1 ]
Yuan, Lixia [1 ]
Li, Zhen [1 ]
Huang, Yunhui [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Mat Sci & Engn, State Key Lab Mat Proc & Die & Mold Technol, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金;
关键词
BMIm(+) ions; crystallographic orientation; electrolyte additives; Zn dendrites; Zn-ion batteries; DENDRITE FORMATION; ZINC ANODE; CORROSION;
D O I
10.1002/aenm.202203254
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Uncontrolled growth of Zn dendrites is the main reason for the short-circuit failure of aqueous Zn-ion batteries. Using electrolyte additives to manipulate the crystal growth is one of the most convenient strategies to mitigate the dendrite issue. However, most additives would be unstable during cycling due to the structural reconstruction of the deposition layer. Herein, it is proposed to use 1-butyl-3-methylimidazolium cation (BMIm(+) ion) as an electrolyte additive, which could steadily induce the preferential growth of (002) plane and inhibit the formation of Zn dendrites. Specifically, BMIm(+) ion will be preferentially adsorbed on (100) and (101) planes of Zn anodes, forcing Zn2+ ion to deposit on the (002) plane, thus inducing the preferential growth of the (002) plane and forming a flat and compact deposition layer. As a result, the Zn anode cycles for 1000 h at10 mA cm(-2) and 10 mAh cm(-2) as well as a high Coulombic efficiency of 99.8%. Meanwhile, the NH4V4O10||Zn pouch cell can operate stably for 240 cycles at 0.4 A g(-1). The BMIm(+) ion additive keeps a stable effect on the structural reconstruction of the Zn anode during the prolonged cycling.
引用
收藏
页数:10
相关论文
共 50 条
[11]   Design of Zn anode protection materials for mild aqueous Zn-ion batteries [J].
Zhang, Yuejuan ;
Bi, Songshan ;
Niu, Zhiqiang ;
Zhou, Weiya ;
Xie, Sishen .
ENERGY MATERIALS, 2022, 2 (02)
[12]   Surface and Interface Engineering of Zn Anodes in Aqueous Rechargeable Zn-Ion Batteries [J].
Zheng, Jiaxian ;
Huang, Zihao ;
Ming, Fangwang ;
Zeng, Ye ;
Wei, Binbin ;
Jiang, Qiu ;
Qi, Zhengbing ;
Wang, Zhoucheng ;
Liang, Hanfeng .
SMALL, 2022, 18 (21)
[13]   Insights and prospects on the surface modification of zn metal anodes for aqueous rechargeable Zn-ion batteries [J].
Sun, Xiaojuan ;
Li, Chaowei ;
Qian, Xinyi ;
Gong, Lijie ;
Cui, Danyao ;
Ji, Qingyan ;
Du, Weimin .
JOURNAL OF ENERGY STORAGE, 2025, 127
[14]   Challenges and strategies on Zn electrodeposition for stable Zn-ion batteries [J].
Zheng, Xinhua ;
Ahmad, Touqeer ;
Chen, Wei .
ENERGY STORAGE MATERIALS, 2021, 39 (39) :365-394
[15]   Recent advances in zinc anodes for high-performance aqueous Zn-ion batteries [J].
Jia, Hao ;
Wang, Ziqi ;
Tawiah, Benjamin ;
Wang, Yidi ;
Chan, Cheuk-Ying ;
Fei, Bin ;
Pan, Feng .
NANO ENERGY, 2020, 70
[16]   Cathodes for Aqueous Zn-Ion Batteries: Materials, Mechanisms, and Kinetics [J].
Zuo, Shiyong ;
Xu, Xijun ;
Ji, Shaomin ;
Wang, Zhuosen ;
Liu, Zhengbo ;
Liu, Jun .
CHEMISTRY-A EUROPEAN JOURNAL, 2021, 27 (03) :830-860
[17]   Electrolyte engineering strategies for regulation of the Zn metal anode in aqueous Zn-ion batteries [J].
Li, Zixuan ;
Robertson, Alex W. .
BATTERY ENERGY, 2023, 2 (01)
[18]   On Energy Storage Chemistry of Aqueous Zn-Ion Batteries: From Cathode to Anode [J].
Xiujuan Chen ;
Wei Li ;
David Reed ;
Xiaolin Li ;
Xingbo Liu .
Electrochemical Energy Reviews, 2023, 6
[19]   Electrode Materials for Practical Rechargeable Aqueous Zn-Ion Batteries: Challenges and Opportunities [J].
Zhu, Kaiyue ;
Wu, Tao ;
Sun, Shichen ;
Wen, Yeting ;
Huang, Kevin .
CHEMELECTROCHEM, 2020, 7 (13) :2714-2734
[20]   3D Cold-Trap Environment Printing for Long-Cycle Aqueous Zn-Ion Batteries [J].
Lu, Hongyu ;
Hu, Jisong ;
Zhang, Yan ;
Zhang, Kaiqi ;
Yan, Xiaoying ;
Li, Heqi ;
Li, Jianzhu ;
Li, Yujie ;
Zhao, Jingxin ;
Xu, Bingang .
ADVANCED MATERIALS, 2023, 35 (09)