Estimation of sub-endmembers using spatial-spectral approach for hyperspectral images

被引:0
作者
Chetia, Gouri Shankar [1 ]
Devi, Bishnulatpam Pushpa [1 ]
机构
[1] Natl Inst Technol Meghalaya, Dept Elect & Commun Engn, Shillong 793003, Meghalaya, India
关键词
Endmembers; hyperspectral images; unmixing; segmentation; spatial and spectral features;
D O I
10.1142/S0219691322500473
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In Blind Hyperspectral Unmixing, the accuracy of the estimated number of endmembers affects the succeeding steps of extraction of endmember signatures and acquiring their fractional abundances. The characteristics of endmember signature depend on the nature of the material on the ground and share similar characteristics for variants of the same material. In this paper, we introduce a new concept of sub-endmembers to identify similar materials that are variants of a global endmember. Identifying the sub-endmembers will provide a meaningful interpretation of the endmember variability along with increased unmixing accuracy. This paper proposes a new algorithm exploiting both the spatial and spectral information present in hyperspectral data. The hyperspectral data are segmented into homogenous regions (superpixels) based on the Simple Linear Iterative Clustering (SLIC) algorithm, and the mean spectral of each region is accounted for in finding the global endmembers. The difference of eigenvalues-based thresholding method is used to find the number of global and sub-endmembers. The method has been tested on synthetic and real hyperspectral data and has successfully estimated the number of global endmembers as well as sub-endmembers. The method is also compared with other state-of-the-art methods, and better performances are obtained at a reasonably lower computational complexity.
引用
收藏
页数:25
相关论文
共 19 条
  • [1] SLIC Superpixels Compared to State-of-the-Art Superpixel Methods
    Achanta, Radhakrishna
    Shaji, Appu
    Smith, Kevin
    Lucchi, Aurelien
    Fua, Pascal
    Suesstrunk, Sabine
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2012, 34 (11) : 2274 - 2281
  • [2] Hyperspectral Data Geometry-Based Estimation of Number of Endmembers Using p-Norm-Based Pure Pixel Identification Algorithm
    Ambikapathi, ArulMurugan
    Chan, Tsung-Han
    Chi, Chong-Yung
    Keizer, Kannan
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2013, 51 (05): : 2753 - 2769
  • [3] [Anonymous], HYP IM SYNTH EIAS TO
  • [4] Hyperspectral Unmixing Overview: Geometrical, Statistical, and Sparse Regression-Based Approaches
    Bioucas-Dias, Jose M.
    Plaza, Antonio
    Dobigeon, Nicolas
    Parente, Mario
    Du, Qian
    Gader, Paul
    Chanussot, Jocelyn
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2012, 5 (02) : 354 - 379
  • [5] Hyperspectral subspace identification
    Bioucas-Dias, Jose M.
    Nascimento, Jose M. P.
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2008, 46 (08): : 2435 - 2445
  • [6] Chang C. I., 1994, ANN M P AM SOC PHOT, P236
  • [7] Estimation of number of spectrally distinct signal sources in hyperspectral imagery
    Chang, CI
    Du, Q
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2004, 42 (03): : 608 - 619
  • [8] Chein-I Chang, 1999, IEEE 1999 International Geoscience and Remote Sensing Symposium. IGARSS'99 (Cat. No.99CH36293), P509, DOI 10.1109/IGARSS.1999.773549
  • [9] Chu X., 2019, Data Cleaning
  • [10] Girouard G., 2004, 20th ISPRS congress, P599