Perspective on cycling stability of lithium-iron manganese phosphate for lithium-ion batteries

被引:30
作者
Zhang, Kun [1 ]
Li, Zi-Xuan [1 ]
Li, Xiu [2 ]
Chen, Xi-Yong [1 ]
Tang, Hong-Qun [1 ]
Liu, Xin-Hua [3 ]
Wang, Cai-Yun [4 ]
Ma, Jian-Min [2 ]
机构
[1] Guangxi Univ, Sch Resources Environm & Mat, Guangxi Key Lab Proc Nonferrous Met & Featured Ma, Nanning 530004, Peoples R China
[2] Univ Elect Sci & Technol China, Sch Mat & Energy, Chengdu 611731, Peoples R China
[3] Beihang Univ, Sch Transportat Sci & Engn, Beijing 102206, Peoples R China
[4] Univ Wollongong, Intelligent Polymer Res Inst, AIIM, Innovat Campus, Wollongong, NSW 2500, Australia
基金
中国国家自然科学基金;
关键词
Lithium iron manganese phosphate; Cathode; Cycling stability; Electrolyte modification; Doping; Coating; Controlled synthesis; CATHODE MATERIAL; ELECTROCHEMICAL PERFORMANCE; SOLVOTHERMAL SYNTHESIS; POSITIVE-ELECTRODE; RATE-CAPABILITY; LIFEPO4; DIFFUSION; COMPOSITE; LIMNPO4; CARBON;
D O I
10.1007/s12598-022-02107-w
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Lithium-iron manganese phosphates (LiFexMn1-xPO4, 0.1 < x < 0.9) have the merits of high safety and high working voltage. However, they also face the challenges of insufficient conductivity and poor cycling stability. Some progress has been achieved to solve these problems. Herein, we firstly summarized the influence of different electrolyte systems on the electrochemical performance of LiFexMn1-xPO4, and then discussed the effect of element doping, lastly studied the influences of conductive layer coating and morphology control on the cycling stability. Finally, the prospects and challenges of developing high-cycling LiFexMn1-xPO4 were proposed.
引用
收藏
页码:740 / 750
页数:11
相关论文
共 85 条
[1]   Olivine LiCoPO4 as 4.8 V electrode material for lithium batteries [J].
Amine, K ;
Yasuda, H ;
Yamachi, M .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2000, 3 (04) :178-179
[2]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[3]   Mn substitution controlled Li-diffusion in single crystalline nanotubular LiFePO4 high rate-capability cathodes: Experimental and theoretical studies [J].
Budumuru, Akshay Kumar ;
Viji, M. ;
Jena, Ajit ;
Nanda, B. R. K. ;
Sudakar, C. .
JOURNAL OF POWER SOURCES, 2018, 406 :50-62
[4]   Construction of Carbon-Coated LiMn0.5Fe0.5PO4@Li0.33La0.56TiO3 Nanorod Composites for High-Performance Li-Ion Batteries [J].
Chang, Hui ;
Li, Ying ;
Fang, Zi-Kui ;
Qu, Jin-Peng ;
Zhu, Yan-Rong ;
Yi, Ting-Feng .
ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (28) :33102-33111
[5]   Synthesis and performance of LiMn0.7Fe0.3PO4 cathode material for lithium ion batteries [J].
Chang, XY ;
Wang, ZX ;
Li, XH ;
Zhang, L ;
Guo, HJ ;
Peng, WJ .
MATERIALS RESEARCH BULLETIN, 2005, 40 (09) :1513-1520
[6]   Thermal instability of Olivine-type LiMnPO4 cathodes [J].
Chen, Guoying ;
Richardson, Thomas J. .
JOURNAL OF POWER SOURCES, 2010, 195 (04) :1221-1224
[7]   In Situ Electrospinning Synthesis of N-Doped C Nanofibers with Uniform Embedding of Mn Doped MFe1-xMnxPO4(M = Li, Na) as a High Performance Cathode for Lithium/Sodium-Ion Batteries [J].
Chen, Wenyan ;
Xu, Donghui ;
Chen, Yuancheng ;
Tang, Tang ;
Kuang, Shaojie ;
Fu, Haikuo ;
Zhou, Wuyi ;
Yu, Xiaoyuan .
ADVANCED MATERIALS INTERFACES, 2020, 7 (19)
[8]   Modification of phosphorus-doped carbon coating enhances the electrochemical performance of LiFe0.8Mn0.2PO4 cathode material [J].
Cui, Xiaoling ;
Tuo, Kuanyou ;
Dong, Hong ;
Fu, Xiaolan ;
Wang, Shimin ;
Zhang, Ningshuang ;
Mao, Liping ;
Li, Shiyou .
JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 885
[9]   Synthesis and characterization of carbon-coated LiMnPO4 and LiMn1-xFexPO4 (x=0.2, 0.3) materials for lithium-ion batteries [J].
Damen, Libero ;
De Giorgio, Francesca ;
Monaco, Simone ;
Veronesi, Federico ;
Mastragostino, Marina .
JOURNAL OF POWER SOURCES, 2012, 218 :250-253
[10]   A computational investigation on fluorinated-polyanionic compounds as positive electrode for lithium batteries [J].
de Dompablo, M. E. Arroyo y ;
Amador, U. ;
Tarascon, J. -M. .
JOURNAL OF POWER SOURCES, 2007, 174 (02) :1251-1257