Improved Ionospheric Total Electron Content Maps over China Using Spatial Gridding Approach

被引:1
作者
Song, Fucheng [1 ]
Shi, Shuangshuang [2 ,3 ]
机构
[1] Linyi Univ, Coll Resources & Environm, Shandong Prov Key Lab Water & Soil Conservat & Env, Linyi 276000, Peoples R China
[2] China Univ Min & Technol, Jiangsu Key Lab Resources & Environm Informat Engn, Xuzhou 221116, Peoples R China
[3] China Univ Min & Technol, Sch Environm Sci & Spatial Informat, Xuzhou 221116, Peoples R China
基金
中国国家自然科学基金;
关键词
China ionosphere maps; total electron content; spatial gridding approach; particle swarm optimization algorithm; artificial neural network; MODEL; TEC; GPS; VALIDATION;
D O I
10.3390/atmos15030351
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Precise regional ionospheric total electron content (TEC) models play a crucial role in correcting ionospheric delays for single-frequency receivers and studying variations in the Earth's space environment. A particle swarm optimization neural network (PSO-NN)-based model for ionospheric TEC over China has been developed using a long-term (2008-2021) ground-based global positioning system (GPS), COSMIC, and Fengyun data under geomagnetic quiet conditions. In this study, a spatial gridding approach is utilized to propose an improved version of the PSO-NN model, named the PSO-NN-GRID. The root-mean-square error (RMSE) and mean absolute error (MAE) of the TECs estimated from the PSO-NN-GRID model on the test data set are 3.614 and 2.257 TECU, respectively, which are 7.5% and 5.5% smaller than those of the PSO-NN model. The improvements of the PSO-NN-GRID model over the PSO-NN model during the equinox, summer, and winter of 2015 are 0.4-22.1%, 0.1-12.8%, and 0.2-26.2%, respectively. Similarly, in 2019, the corresponding improvements are 0.5-13.6%, 0-10.1%, and 0-16.1%, respectively. The performance of the PSO-NN-GRID model is also verified under different solar activity conditions. The results reveal that the RMSEs for the TECs estimated by the PSO-NN-GRID model, with F10.7 values ranging within [0, 80), [80, 100), [100, 130), [130, 160), [160, 190), [190, 220), and [220, +), are, respectively, 1.0%, 2.8%, 4.7%, 5.5%, 10.1%, 9.1%, and 28.4% smaller than those calculated by the PSO-NN model.
引用
收藏
页数:19
相关论文
共 43 条
[21]   Two-step method for the determination of the differential code biases of COMPASS satellites [J].
Li, Zishen ;
Yuan, Yunbin ;
Li, Hui ;
Ou, Jikun ;
Huo, Xingliang .
JOURNAL OF GEODESY, 2012, 86 (11) :1059-1076
[22]   Advances in Ionospheric Space Weather by Using FORMOSAT-7/COSMIC-2 GNSS Radio Occultations [J].
Liu, Jann-Yenq ;
Lin, Chien-Hung ;
Rajesh, Panthalingal Krishnanunni ;
Lin, Chi-Yen ;
Chang, Fu-Yuan ;
Lee, I-Te ;
Fang, Tzu-Wei ;
Fuller-Rowell, Dominic ;
Chen, Shih-Ping .
ATMOSPHERE, 2022, 13 (06)
[23]   Spherical cap harmonic model for mapping and predicting regional TEC [J].
Liu, Jingbin ;
Chen, Ruizhi ;
Wang, Zemin ;
Zhang, Hongping .
GPS SOLUTIONS, 2011, 15 (02) :109-119
[24]   An empirical orthogonal function model of total electron content over China [J].
Mao, Tian ;
Wan, Weixing ;
Yue, Xinan ;
Sun, Lingfeng ;
Zhao, Biqiang ;
Guo, Jianpeng .
RADIO SCIENCE, 2008, 43 (02)
[25]  
Maruyama T, 2007, ANN GEOPHYS-GERMANY, V25, P2609
[26]   Validation of COSMIC values of foF2 and M(3000)F2 using ground-based ionosondes [J].
McNamara, Leo F. ;
Thompson, Donald C. .
ADVANCES IN SPACE RESEARCH, 2015, 55 (01) :163-169
[27]   A new version of the NeQuick ionosphere electron density model [J].
Nava, B. ;
Coisson, P. ;
Radicella, S. M. .
JOURNAL OF ATMOSPHERIC AND SOLAR-TERRESTRIAL PHYSICS, 2008, 70 (15) :1856-1862
[28]   Storm-Time Modeling of the African Regional Ionospheric Total Electron Content Using Artificial Neural Networks [J].
Okoh, Daniel ;
Habarulema, John Bosco ;
Rabiu, Babatunde ;
Seemala, Gopi ;
Wisdom, Joshua Benjamin ;
Olwendo, Joseph ;
Obrou, Olivier ;
Matamba, Tshimangadzo Merline .
SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS, 2020, 18 (09)
[29]   A Neural Network-Based Ionospheric Model Over Africa From Constellation Observing System for Meteorology, Ionosphere, and Climate and Ground Global Positioning System Observations [J].
Okoh, Daniel ;
Seemala, Gopi ;
Rabiu, Babatunde ;
Habarulema, John Bosco ;
Jin, Shuanggen ;
Shiokawa, Kazuo ;
Otsuka, Yuichi ;
Aggarwal, Malini ;
Uwamahoro, Jean ;
Mungufeni, Patrick ;
Segun, Bolaji ;
Obafaye, Aderonke ;
Ellahony, Nada ;
Okonkwo, Chinelo ;
Tshisaphungo, Mpho ;
Shetti, Dadaso .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2019, 124 (12) :10512-10532
[30]   On the predictability of foF2 using neural networks [J].
Poole, AWV ;
McKinnell, LA .
RADIO SCIENCE, 2000, 35 (01) :225-234