Effects of Warming and Elevated CO2 on Stomatal Conductance and Chlorophyll Fluorescence of C3 and C4 Coastal Wetland Species

被引:1
|
作者
Sendall, Kerrie M. [1 ,2 ]
Munoz, Cyd M. Melendez [1 ]
Ritter, Angela D. [1 ]
Rich, Roy L. [3 ]
Noyce, Genevieve L. [3 ]
Megonigal, J. Patrick [3 ]
机构
[1] Rider Univ, Dept Biol & Behav Neurosci, Lawrenceville, NJ 08648 USA
[2] Georgia Southern Univ, Dept Biol, Statesboro, GA 30458 USA
[3] Smithsonian Environm Res Ctr, Edgewater, MD USA
关键词
Climate warming; Distichlis spicata; Elevated CO2; Schoenoplectus americanus; Spartina patens; Stomatal conductance; ATMOSPHERIC CO2; GAS-EXCHANGE; PHOTOSYSTEM-II; CANOPY PHOTOSYNTHESIS; ELECTRON-TRANSPORT; ECOSYSTEM CARBON; PLANT NITROGEN; CHESAPEAKE BAY; LEAF NITROGEN; REPAIR CYCLE;
D O I
10.1007/s13157-024-01780-0
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Coastal wetland communities provide valuable ecosystem services such as erosion prevention, soil accretion, and essential habitat for coastal wildlife, but are some of the most vulnerable to the threats of climate change. This work investigates the combined effects of two climate stressors, elevated temperature (ambient, + 1.7 degrees C, + 3.4 degrees C, and 5.1 degrees C) and elevated CO2 (eCO(2)), on leaf physiological traits of dominant salt marsh plant species. The research took place at the Salt Marsh Accretion Response to Temperature eXperiment (SMARTX) at the Smithsonian Environmental Research Center, which includes two plant communities: a C-3 sedge community and a C-4 grass community. Here we present data collected over five years on rates of stomatal conductance (g(s)), quantum efficiency of PSII photochemistry (F-v/F-m), and rates of electron transport (ETRmax). We found that both warming and eCO(2) caused declines in all traits, but the warming effects were greater for the C-3 sedge. This species showed a strong negative stomatal response to warming in 2017 and 2018 (28% and 17% reduction, respectively in + 5.1 degrees C). However, in later years the negative response to warming was dampened to < 7%, indicating that S. americanus was able to partially acclimate to the warming over time. In 2022, we found that sedges growing in the combined + 5.1 degrees C eCO(2) plots exhibited more significant declines in g(s), F-v/F-m, and ETRmax than in either treatment individually. These results are important for predicting future trends in growth of wetland species, which serve as a large carbon sink that may help mitigate the effects of climate change.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] Performance of a generalist grasshopper on a C3 and a C4 grass: compensation for the effects of elevated CO2 on plant nutritional quality
    Raymond V. Barbehenn
    David N. Karowe
    Zhong Chen
    Oecologia, 2004, 140 : 96 - 103
  • [32] Physiological and Biochemical Responses of Pseudocereals with C3 and C4 Photosynthetic Metabolism in an Environment with Elevated CO2
    Silva, Bruna Evelyn Paschoal
    Pires, Stefania Nunes
    Teixeira, Sheila Bigolin
    Lucho, Simone Ribeiro
    Fagundes, Natan da Silva
    Centeno, Larissa Herter
    Carlos, Filipe Selau
    de Souza, Fernanda Reolon
    de Avila, Luis Antonio
    Deuner, Sidnei
    PLANTS-BASEL, 2024, 13 (23):
  • [33] Elevated Atmospheric CO2 Triggers Compensatory Feeding by Root Herbivores on a C3 but Not a C4 Grass
    Johnson, Scott N.
    Lopaticki, Goran
    Hartley, Susan E.
    PLOS ONE, 2014, 9 (03):
  • [34] Effects of low atmospheric CO2 and elevated temperature during growth on the gas exchange responses of C3, C3-C4 intermediate, and C4 species from three evolutionary lineages of C4 photosynthesis
    Vogan, Patrick J.
    Sage, Rowan F.
    OECOLOGIA, 2012, 169 (02) : 341 - 352
  • [35] Associated growth of C3 and C4 desert plants helps the C3 species at the cost of the C4 species
    Su, Peixi
    Yan, Qiaodi
    Xie, Tingting
    Zhou, Zijuan
    Gao, Song
    ACTA PHYSIOLOGIAE PLANTARUM, 2012, 34 (06) : 2057 - 2068
  • [36] EFFECTS OF CO2 AND TEMPERATURE ON GROWTH AND RESOURCE USE OF COOCCURRING C3 AND C4 ANNUALS
    COLEMAN, JS
    BAZZAZ, FA
    ECOLOGY, 1992, 73 (04) : 1244 - 1259
  • [37] EFFECTS OF TEMPERATURE ON CO2 DEPENDENCE OF GAS EXCHANGES IN C3 AND C4 CROP PLANTS
    IMAI, K
    OKAMOTOSATO, M
    JAPANESE JOURNAL OF CROP SCIENCE, 1991, 60 (01) : 139 - 145
  • [38] Associated growth of C3 and C4 desert plants helps the C3 species at the cost of the C4 species
    Peixi Su
    Qiaodi Yan
    Tingting Xie
    Zijuan Zhou
    Song Gao
    Acta Physiologiae Plantarum, 2012, 34 : 2057 - 2068
  • [39] Chlorophyll Fluorescence, Photoinhibition and Abiotic Stress: Does it Make Any Difference the Fact to Be a C3 or C4 Species?
    Guidi, Lucia
    Lo Piccolo, Ermes
    Landi, Marco
    FRONTIERS IN PLANT SCIENCE, 2019, 10
  • [40] C3 and C4 Biomass Allocation Responses to Elevated CO2 and Nitrogen: Contrasting Resource Capture Strategies
    White, K. P.
    Langley, J. A.
    Cahoon, D. R.
    Megonigal, J. P.
    ESTUARIES AND COASTS, 2012, 35 (04) : 1028 - 1035