Effects of Warming and Elevated CO2 on Stomatal Conductance and Chlorophyll Fluorescence of C3 and C4 Coastal Wetland Species

被引:1
|
作者
Sendall, Kerrie M. [1 ,2 ]
Munoz, Cyd M. Melendez [1 ]
Ritter, Angela D. [1 ]
Rich, Roy L. [3 ]
Noyce, Genevieve L. [3 ]
Megonigal, J. Patrick [3 ]
机构
[1] Rider Univ, Dept Biol & Behav Neurosci, Lawrenceville, NJ 08648 USA
[2] Georgia Southern Univ, Dept Biol, Statesboro, GA 30458 USA
[3] Smithsonian Environm Res Ctr, Edgewater, MD USA
关键词
Climate warming; Distichlis spicata; Elevated CO2; Schoenoplectus americanus; Spartina patens; Stomatal conductance; ATMOSPHERIC CO2; GAS-EXCHANGE; PHOTOSYSTEM-II; CANOPY PHOTOSYNTHESIS; ELECTRON-TRANSPORT; ECOSYSTEM CARBON; PLANT NITROGEN; CHESAPEAKE BAY; LEAF NITROGEN; REPAIR CYCLE;
D O I
10.1007/s13157-024-01780-0
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Coastal wetland communities provide valuable ecosystem services such as erosion prevention, soil accretion, and essential habitat for coastal wildlife, but are some of the most vulnerable to the threats of climate change. This work investigates the combined effects of two climate stressors, elevated temperature (ambient, + 1.7 degrees C, + 3.4 degrees C, and 5.1 degrees C) and elevated CO2 (eCO(2)), on leaf physiological traits of dominant salt marsh plant species. The research took place at the Salt Marsh Accretion Response to Temperature eXperiment (SMARTX) at the Smithsonian Environmental Research Center, which includes two plant communities: a C-3 sedge community and a C-4 grass community. Here we present data collected over five years on rates of stomatal conductance (g(s)), quantum efficiency of PSII photochemistry (F-v/F-m), and rates of electron transport (ETRmax). We found that both warming and eCO(2) caused declines in all traits, but the warming effects were greater for the C-3 sedge. This species showed a strong negative stomatal response to warming in 2017 and 2018 (28% and 17% reduction, respectively in + 5.1 degrees C). However, in later years the negative response to warming was dampened to < 7%, indicating that S. americanus was able to partially acclimate to the warming over time. In 2022, we found that sedges growing in the combined + 5.1 degrees C eCO(2) plots exhibited more significant declines in g(s), F-v/F-m, and ETRmax than in either treatment individually. These results are important for predicting future trends in growth of wetland species, which serve as a large carbon sink that may help mitigate the effects of climate change.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Effects of elevated atmospheric CO2 on the nutritional ecology of C3 and C4 grass-feeding caterpillars
    Raymond V. Barbehenn
    David N. Karowe
    Angela Spickard
    Oecologia, 2004, 140 : 86 - 95
  • [22] Effects of elevated atmospheric CO2 on the nutritional ecology of C3 and C4 grass-feeding caterpillars
    Barbehenn, RV
    Karowe, DN
    Spickard, A
    OECOLOGIA, 2004, 140 (01) : 86 - 95
  • [23] Responses of selected C3 and C4 halophytes to elevated CO2 concentration under salinity
    Jothiramshekar, Saranya
    Benjamin, Jenifer Joseph
    Krishnasamy, Rani
    Pal, Anand Kumar
    George, Suja
    Swaminathan, Rajalakshmi
    Parida, Ajay K.
    CURRENT SCIENCE, 2018, 115 (01): : 129 - 135
  • [24] Comparative responses of model C3 and C4 plants to drought in low and elevated CO2
    Ward, JK
    Tissue, DT
    Thomas, RB
    Strain, BR
    GLOBAL CHANGE BIOLOGY, 1999, 5 (08) : 857 - 867
  • [25] Photosynthesis and yield response to elevated CO2, C4 plant foxtail millet behaves similarly to C3 species
    Li, Ping
    Li, Bingyan
    Seneweera, Saman
    Zong, Yuzheng
    Li, Frank Yonghong
    Han, Yuanhuai
    Hao, Xingyu
    PLANT SCIENCE, 2019, 285 : 239 - 247
  • [26] Combined effect of elevated CO2 and temperature on the growth and phenology of two annual C3 and C4 weedy species
    Lee, Jae-Seok
    AGRICULTURE ECOSYSTEMS & ENVIRONMENT, 2011, 140 (3-4) : 484 - 491
  • [27] Influences of residual stomatal conductance on the intrinsic water use efficiency of two C3 and two C4 species
    Ye, Zi Piao
    He, Jian Qiang
    An, Ting
    Duan, Shi Hua
    Kang, Hua Jing
    Wang, Fu Biao
    AGRICULTURAL WATER MANAGEMENT, 2024, 306
  • [28] Photosynthesis of C3, C3-C4, and C4 grasses at glacial CO2
    Pinto, Harshini
    Sharwood, Robert E.
    Tissue, David T.
    Ghannoum, Oula
    JOURNAL OF EXPERIMENTAL BOTANY, 2014, 65 (13) : 3669 - 3681
  • [29] Performance of a generalist grasshopper on a C3 and a C4 grass:: compensation for the effects of elevated CO2 on plant nutritional quality
    Barbehenn, RV
    Karowe, DN
    Chen, Z
    OECOLOGIA, 2004, 140 (01) : 96 - 103
  • [30] Interactive effects of elevated CO2 with combined heat and drought stresses on the physiology and yield of C3 and C4 plants
    Vijayalakshmi, D.
    Priya, J. Ranjani
    Vinitha, A.
    Ramya, G.
    JOURNAL OF CROP SCIENCE AND BIOTECHNOLOGY, 2024, 27 (01) : 1 - 16