Calogero-Moser eigenfunctions modulo ps

被引:0
作者
Gorsky, Alexander [1 ]
Varchenko, Alexander [2 ]
机构
[1] Russian Acad Sci, Inst Informat Transmiss Problems, Bolshoy Karetny Per 19, Moscow 127051, Russia
[2] Univ North Carolina Chapel Hill, Dept Math, Chapel Hill, NC 27599 USA
关键词
Calogero-Moser system; KZ equations; p-adic approximation; KNIZHNIK-ZAMOLODCHIKOV; DIFFERENTIAL-EQUATIONS; INTEGRABLE SYSTEMS; FLAG MANIFOLDS; GAUDIN MODEL; QUANTUM; REPRESENTATIONS; OPERATORS; ALGEBRAS; DUALITY;
D O I
10.1007/s11005-024-01792-1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this note we use the Matsuo-Cherednik duality between the solutions to the Knizhnik-Zamolodchikov (KZ) equations and eigenfunctions of Calogero-Moser Hamiltonians to get the polynomial p(s)-truncation of the Calogero-Moser eigenfunctions at a rational coupling constant. The truncation procedure uses the integral representation for the hypergeometric solutions to KZ equations. The s ->infinity limit to the pure p-adic case has been analyzed in the n=2 case.
引用
收藏
页数:27
相关论文
共 55 条
[1]  
Adolphson A., arXiv:2204.09814, P1
[2]   QUASIMAP COUNTS AND BETHE EIGENFUNCTIONS [J].
Aganagic, Mina ;
Okounkov, Andrei .
MOSCOW MATHEMATICAL JOURNAL, 2017, 17 (04) :565-600
[3]  
Berest Y, 2003, INT MATH RES NOTICES, V2003, P1053
[4]   A UNIFICATION OF KNIZHNIK-ZAMOLODCHIKOV AND DUNKL OPERATORS VIA AFFINE HECKE ALGEBRAS [J].
CHEREDNIK, I .
INVENTIONES MATHEMATICAE, 1991, 106 (02) :411-431
[5]  
Cherednik I., 2005, Double Affine Hecke Algebras, V319, DOI [10.1017/CBO9780511546501, DOI 10.1017/CBO9780511546501]
[6]   Jones Polynomials of Torus Knots via DAHA [J].
Cherednik, Ivan .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2013, 2013 (23) :5366-5425
[7]  
Dwork B., 1969, Inst. Hautes Etudes Sci. Publ. Math. No, V37, P27
[8]   Dynamical Weyl groups and applications [J].
Etingof, P ;
Varchenko, A .
ADVANCES IN MATHEMATICS, 2002, 167 (01) :74-127
[9]  
Etingof P., arXiv:math/0606233, P1
[10]  
Etingof P, 2023, Arxiv, DOI arXiv:2304.07843