Effects of high-temperature thermal reduction on thermal conductivity of reduced graphene oxide polymer composites

被引:14
作者
Lee, Yun Seon [1 ,2 ]
Kim, Nam Ryeol [1 ,3 ]
Park, Sang Ki [1 ]
Ko, Yong-il [1 ]
Shin, Yunjae [4 ]
Yang, Beomjoo [4 ]
Yang, Cheol-Min [1 ]
机构
[1] Korea Inst Sci & Technol KIST, Inst Adv Composite Mat, 92 Chudong Ro, Seoul 55324, Jeollabuk Do, South Korea
[2] Inha Univ, Dept Chem Engn, 100 Inha Ro, Incheon 22212, South Korea
[3] Chonnam Natl Univ, Grad Sch, Dept Polymer Engn, 77 Yongbong Ro, Gwangju 61186, South Korea
[4] Chungbuk Natl Univ, Sch Civil Engn, 1 Chungdae Ro, Cheongju 28644, South Korea
关键词
Reduced graphene oxide; Thermal reduction; Polymer composite; Thermal conductivity; GRAPHITE OXIDE; CARBON NANOTUBES; NANOPLATELETS; FILLER; RAMAN; MANAGEMENT;
D O I
10.1016/j.apsusc.2023.159140
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The graphitic crystalline structure of reduced graphene oxide (rGO) can be improved by high-temperature thermal reduction at various heat-treatment temperatures ranging from 1000 to 2500 C-degrees. The crystallinity significantly increased with increasing heat-treatment temperature. The electrical conductivities of the rGOs heat-treated at 2000 and 2500 C-degrees (h-rGO-2000 and h-rGO-2500, respectively) were similar to those of commercial graphite. The isotropic thermal conductivity of rGO/epoxy composite with 10 wt% h-rGO-2500 (2.56 W/ mK) was 11.6 times higher than that of pristine rGO (p-rGO; 0.22 W/mK) and significantly superior to those of epoxy composites with commercial graphite (0.82 W/mK) and mesophase pitch-based carbon fibers (MPCFs; 1.29 W/mK). Moreover, owing to the synergistic effect operating in the MPCF-h-rGO hybrid filler in epoxy composites, this combination of fillers increased the thermal conductivity to a greater extent than the MPCF-prGO hybrid filler. Optimum synergistic effects on the isotropic and in-plane thermal conductivities were achieved with an MPCF:h-rGO-2000 weight ratio of 49:1 (11.90 and 17.93 W/mK, 1.48 and 1.85 times higher than 8.02 and 9.69 W/mK for MPCF-p-rGO, respectively). Finally, a machine learning method that could predict and optimize the properties of rGOs based on their heat-treatment temperatures and material compositions was developed.
引用
收藏
页数:13
相关论文
共 60 条
[1]   Alumina-graphene hybrid filled epoxy composite: Quantitative validation and enhanced thermal conductivity [J].
Akhtar, M. Wasim ;
Lee, Yun Seon ;
Yoo, Dong Jin ;
Kim, Jong Seok .
COMPOSITES PART B-ENGINEERING, 2017, 131 :184-195
[2]   Comparison of mechanical, electrical and thermal properties in graphene oxide and reduced graphene oxide filled epoxy nanocomposite adhesives [J].
Aradhana, Ruchi ;
Mohanty, Smita ;
Nayak, Sanjay Kumar .
POLYMER, 2018, 141 :109-123
[3]   Superior thermal conductivity of single-layer graphene [J].
Balandin, Alexander A. ;
Ghosh, Suchismita ;
Bao, Wenzhong ;
Calizo, Irene ;
Teweldebrhan, Desalegne ;
Miao, Feng ;
Lau, Chun Ning .
NANO LETTERS, 2008, 8 (03) :902-907
[4]   Thermal Properties of the Binary-Filler Hybrid Composites with Graphene and Copper Nanoparticles [J].
Barani, Zahra ;
Mohammadzadeh, Amirmahdi ;
Geremew, Adane ;
Huang, Chun-Yu ;
Coleman, Devin ;
Mangolini, Lorenzo ;
Kargar, Fariborz ;
Balandin, Alexander A. .
ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (08)
[5]   Largely improved thermal conductivity of HDPE/expanded graphite/carbon nanotubes ternary composites via filler network-network synergy [J].
Che, Junjin ;
Wu, Kai ;
Lin, Yunjie ;
Wang, Ke ;
Fu, Qiang .
COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2017, 99 :32-40
[6]   Thermal conductivity of polymer-based composites: Fundamentals and applications [J].
Chen, Hongyu ;
Ginzburg, Valeriy V. ;
Yang, Jian ;
Yang, Yunfeng ;
Liu, Wei ;
Huang, Yan ;
Du, Libo ;
Chen, Bin .
PROGRESS IN POLYMER SCIENCE, 2016, 59 :41-85
[7]   In Situ DRIFTS Investigation of Ethylene Oxidation on Ag and Ag/Cu on Reduced Graphene Oxide [J].
D'Oliveira, Monique R. ;
Rabelo, Jessica ;
Veiga, Amanda Garcez ;
Chagas, Carlos Alberto ;
Schmal, Martin .
CATALYSIS LETTERS, 2020, 150 (10) :3036-3048
[8]   Probing the Thermal Deoxygenation of Graphene Oxide Using High-Resolution In Situ X-ray-Based Spectroscopies [J].
Ganguly, Abhijit ;
Sharma, Surbhi ;
Papakonstantinou, Pagona ;
Hamilton, Jeremy .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (34) :17009-17019
[9]  
Gao W, 2009, NAT CHEM, V1, P403, DOI [10.1038/NCHEM.281, 10.1038/nchem.281]
[10]   Recent Advances in Graphene-Based Free-Standing Films for Thermal Management: Synthesis, Properties, and Applications [J].
Gong, Feng ;
Li, Hao ;
Wang, Wenbin ;
Xia, Dawei ;
Liu, Qiming ;
Papavassiliou, Dimitrios V. ;
Xu, Ziqiang .
COATINGS, 2018, 8 (02)