On the Uniqueness of L-Functions and Meromorphic Functions Under the Aegis of two Shared Sets

被引:0
作者
Mallick, Sanjay [1 ]
Basak, Pratap [1 ]
机构
[1] Cooch Behar Panchanan Barma Univ, Dept Math, Cooch Behar 736101, West Bengal, India
关键词
L-function; Meromorphic function; Shared set; POLYNOMIALS;
D O I
10.1007/s40315-023-00513-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The paper presents general criteria for the uniqueness of a non-constant meromorphic function having finitely many poles and a non-constant L-function in the Selberg class when they share two sets. Our results provide the best cardinalities ever obtained in the literature improving all the existing results Li et al. (Lith. Math. J. 58(2), 249-262 (2018)), Kundu and Banerjee (Rend. Circ. Mat. Palermo (2) 70(3), 1227-1244 (2021), Banerjee and Kundu (Lith. Math. J. 61(2), 161-179 (2021) with regard to the most general setting. Further, we have exhibited a number of examples throughout the paper showing the far reaching applications of our results.
引用
收藏
页码:333 / 373
页数:41
相关论文
共 21 条
[1]  
Alzahary TC, 2007, KYUNGPOOK MATH J, V47, P57
[2]   Fujimoto's Theorem - a Further Study [J].
Banerjee, A. .
JOURNAL OF CONTEMPORARY MATHEMATICAL ANALYSIS-ARMENIAN ACADEMY OF SCIENCES, 2016, 51 (04) :199-207
[3]   Weighted Value Sharing and Uniqueness Problems Concerning L-Functions and Certain Meromorphic Functions [J].
Banerjee, Abhijit ;
Kundu, Arpita .
LITHUANIAN MATHEMATICAL JOURNAL, 2021, 61 (02) :161-179
[4]  
Banerjee A, 2010, TAMKANG J MATH, V41, P379
[5]   On the Characterisations of a New Class of Strong Uniqueness Polynomials Generating Unique Range Sets [J].
Banerjee, Abhijit ;
Mallick, Sanjay .
COMPUTATIONAL METHODS AND FUNCTION THEORY, 2017, 17 (01) :19-45
[6]  
Chandrasekhar, 2021, ARXIV
[7]  
Frank G., 1998, COMPLEX VARIABLES TH, V37, P185, DOI DOI 10.1080/17476939808815132
[8]  
Gross F., 1976, Lect. Notes Math., V599, P51
[9]  
Hayman W. K., 1964, MEROMORPHIC FUNCTION
[10]   A Simple Proof and Strengthening of a Uniqueness Theorem for L-functions [J].
Hu, Pei-Chu ;
Li, Bao Qin .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2016, 59 (01) :119-122