Using Machine Learning to Predict the Antibacterial Activity of Ruthenium Complexes

被引:18
作者
Orsi, Markus [1 ]
Shing Loh, Boon [2 ]
Weng, Cheng [2 ]
Ang, Wee Han [2 ,3 ]
Frei, Angelo [1 ]
机构
[1] Univ Bern, Dept Chem Biochem & Pharmaceut Sci, Freiestr 3, CH-3012 Bern, Switzerland
[2] Natl Univ Singapore, Dept Chem, 3 Sci Dr 3, Singapore 117543, Singapore
[3] Natl Univ Singapore, NUS Grad Sch, Integrated Sci & Engn Programme ISEP, 21 Lower Kent Ridge Rd, Singapore 119077, Singapore
基金
欧洲研究理事会; 英国惠康基金; 瑞士国家科学基金会;
关键词
Antibiotics; Antimicrobial Resistance; Machine Learning; Metalloantibiotics; Ruthenium; BACTERIA;
D O I
10.1002/anie.202317901
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Rising antimicrobial resistance (AMR) and lack of innovation in the antibiotic pipeline necessitate novel approaches to discovering new drugs. Metal complexes have proven to be promising antimicrobial compounds, but the number of studied compounds is still low compared to the millions of organic molecules investigated so far. Lately, machine learning (ML) has emerged as a valuable tool for guiding the design of small organic molecules, potentially even in low-data scenarios. For the first time, we extend the application of ML to the discovery of metal-based medicines. Utilising 288 modularly synthesized ruthenium arene Schiff-base complexes and their antibacterial properties, a series of ML models were trained. The models perform well and are used to predict the activity of 54 new compounds. These displayed a 5.7x higher hit-rate (53.7 %) against methicillin-resistant Staphylococcus aureus (MRSA) compared to the original library (9.4 %), demonstrating that ML can be applied to improve the success-rates in the search of new metalloantibiotics. This work paves the way for more ambitious applications of ML in the field of metal-based drug discovery. Machine Learning models were trained on the antibacterial activity of 288 ruthenium-arene Schiff-base complexes and utilised to predict novel compounds based on a virtual library. 54 new compounds were synthesised and found to possess a 5.7x higher hit-rate compared to the training set.**+image
引用
收藏
页数:8
相关论文
共 34 条
  • [1] Helping Chemists Discover New Antibiotics
    Blaskovich, Mark A. T.
    Zuegg, Johannes
    Elliott, Alysha G.
    Cooper, Matthew A.
    [J]. ACS INFECTIOUS DISEASES, 2015, 1 (07): : 285 - 287
  • [2] TUCAN: A molecular identifier and descriptor applicable to the whole periodic table from hydrogen to oganesson
    Brammer, Jan C.
    Blanke, Gerd
    Kellner, Claudia
    Hoffmann, Alexander
    Herres-Pawlis, Sonja
    Schatzschneider, Ulrich
    [J]. JOURNAL OF CHEMINFORMATICS, 2022, 14 (01)
  • [3] Antibiotics in the clinical pipeline as of December 2022
    Butler, Mark S.
    Henderson, Ian R.
    Capon, Robert J.
    Blaskovich, Mark A. T.
    [J]. JOURNAL OF ANTIBIOTICS, 2023, 76 (08) : 431 - 473
  • [4] Machine learning designs non-hemolytic antimicrobial peptides
    Capecchi, Alice
    Cai, Xingguang
    Personne, Hippolyte
    Kohler, Thilo
    van Delden, Christian
    Reymond, Jean-Louis
    [J]. CHEMICAL SCIENCE, 2021, 12 (26) : 9221 - 9232
  • [5] CDC, 2022, COVID 19 ANTIBIOTIC
  • [6] Discovery and Investigation of Anticancer Ruthenium-Arene Schiff-Base Complexes via Water-Promoted Combinatorial Three-Component Assembly
    Chow, Mun Juinn
    Licona, Cynthia
    Wong, Daniel Yuan Qiang
    Pastorin, Giorgia
    Gaiddon, Christian
    Ang, Wee Han
    [J]. JOURNAL OF MEDICINAL CHEMISTRY, 2014, 57 (14) : 6043 - 6059
  • [7] Antimicrobial Use in COVID-19 Patients in the First Phase of the SARS-CoV-2 Pandemic: A Scoping Review
    Cong, Wenjuan
    Poudel, Ak Narayan
    Alhusein, Nour
    Wang, Hexing
    Yao, Guiqing
    Lambert, Helen
    [J]. ANTIBIOTICS-BASEL, 2021, 10 (06):
  • [8] Metals to combat antimicrobial resistance
    Frei, Angelo
    Verderosa, Anthony D. D.
    Elliott, Alysha G. G.
    Zuegg, Johannes
    Blaskovich, Mark A. T.
    [J]. NATURE REVIEWS CHEMISTRY, 2023, 7 (03) : 202 - 224
  • [9] Metal Complexes as Antifungals? From a Crowd-Sourced Compound Library to the First In Vivo Experiments
    Frei, Angelo
    Elliott, Alysha G.
    Kan, Alex
    Dinh, Hue
    Brase, Stefan
    Bruce, Alice E.
    Bruce, Mitchell R. M.
    Chen, Feng
    Humaidy, Dhirgam
    Jung, Nicole
    King, A. Paden
    Lye, Peter G.
    Maliszewska, Hanna K.
    Mansour, Ahmed M.
    Matiadis, Dimitris
    Munoz, Maria Paz
    Pai, Tsung-Yu
    Pokhrel, Shyam
    Sadler, Peter J.
    Sagnou, Marina
    Taylor, Michelle
    Wilson, Justin J.
    Woods, Dean
    Zuegg, Johannes
    Meyer, Wieland
    Cain, Amy K.
    Cooper, Matthew A.
    Blaskovich, Mark A. T.
    [J]. JACS AU, 2022, 2 (10): : 2277 - 2294
  • [10] Metal complexes as a promising source for new antibiotics
    Frei, Angelo
    Zuegg, Johannes
    Elliott, Alysha G.
    Baker, Murray
    Braese, Stefan
    Brown, Christopher
    Chen, Feng
    Dowson, Christopher G.
    Dujardin, Gilles
    Jung, Nicole
    King, A. Paden
    Mansour, Ahmed M.
    Massi, Massimiliano
    Moat, John
    Mohamed, Heba A.
    Renfrew, Anna K.
    Rutledge, Peter J.
    Sadler, Peter J.
    Todd, Matthew H.
    Willans, Charlotte E.
    Wilson, Justin J.
    Cooper, Matthew A.
    Blaskovich, Mark A. T.
    [J]. CHEMICAL SCIENCE, 2020, 11 (10) : 2627 - 2639