QiShenYiQi pills preserve endothelial barrier integrity to mitigate sepsis-induced acute lung injury by inhibiting ferroptosis

被引:7
|
作者
Li, Zhixi [1 ,2 ,3 ]
Yu, Yongjing [1 ,2 ,3 ]
Bu, Yue [1 ,2 ,4 ]
Liu, Chang [1 ,2 ,3 ]
Jin, Jiaqi [3 ,5 ]
Li, Wenqiang [6 ]
Chen, Guangmin [7 ]
Liu, Enran [1 ,2 ]
Zhang, Yan [1 ,2 ]
Gong, Weidong [1 ,2 ]
Luo, Juan [1 ,2 ]
Yue, Ziyong [1 ,2 ]
机构
[1] Harbin Med Univ, Dept Anesthesiol, Affiliated Hosp 2, 246 Xuefu Rd, Harbin 150001, Peoples R China
[2] Heilongjiang Prov Key Lab Res Anesthesiol & Crit C, 246 Xuefu Rd, Harbin 150001, Peoples R China
[3] Chinese Minist Educ, Key Lab Myocardial Ischemia Org, 246 Xuefu Rd, Harbin 150001, Peoples R China
[4] Harbin Med Univ, Dept Pain Med, Affiliated Hosp 2, 246 Xuefu Rd, Harbin 150001, Peoples R China
[5] Capital Med Univ, Xuanwu Hosp, Dept Neurol, 45 Changchun Rd, Beijing 100053, Peoples R China
[6] Fudan Univ, Jinshan Hosp, Dept Vasc Surg, 180 Fenglin Rd, Shanghai 200032, Peoples R China
[7] Harbin Med Univ, Dept Anesthesiol, Affiliated Hosp 1, 199 Dazhi Rd, Harbin 150001, Peoples R China
关键词
Sepsis; Acute lung injury; Endothelial cells; Network pharmacology; Ferroptosis; CHINESE MEDICINE; SUPPRESSION;
D O I
10.1016/j.jep.2023.117610
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Ethnopharmacological relevance: The QiShengYiQi pill (QSYQ) is a traditional Chinese medicinal formulation. The effectiveness and safety of QSYQ in treating respiratory system disorders have been confirmed. Its pharmacological actions include anti-inflammation, antioxidative stress, and improving energy metabolism. However, the mechanism of QSYQ in treating sepsis-induced acute lung injury (si-ALI) remains unclear.Aim of the study: Si-ALI presents a clinical challenge with high incidence and mortality rates. This study aims to confirm the efficacy of QSYQ in si-ALI and to explore the potential mechanisms, providing a scientific foundation for its application and insights for optimizing treatment strategies and identifying potential active components. Materials and methods: The impact of QSYQ on si-ALI was evaluated using the cecal ligation and puncture (CLP) experimental sepsis animal model. The effects of QSYQ on endothelial cells were observed through coculturing with LPS-stimulated macrophage-conditioned medium. Inflammatory cytokine levels, HE staining, Evans blue staining, lung wet/dry ratio, and cell count and protein content in bronchoalveolar lavage fluid were used to assess the degree of lung injury. Network pharmacology was utilized to investigate the potential mechanisms of QSYQ in treating si-ALI. Western blot and immunofluorescence analyses were used to evaluate barrier integrity and validate mechanistically relevant proteins. Results: QSYQ reduced the inflammation and alleviated pulmonary vascular barrier damage in CLP mice (all P < 0.05). A total of 127 potential targets through which QSYQ regulates si-ALI were identified, predominantly enriched in the RAGE pathway. The results of protein-protein interaction analysis suggest that COX2, a well established critical marker of ferroptosis, is among the key targets. In vitro and in vivo studies demonstrated that QSYQ mitigated ferroptosis and vascular barrier damage in sepsis (all P < 0.05), accompanied by a reduction in oxidative stress and the inhibition of the COX2 and RAGE (all P < 0.05).Conclusions: This study demonstrated that QSYQ maintains pulmonary vascular barrier integrity by inhibiting ferroptosis in CLP mice. These findings partially elucidate the mechanism of QSYQ in si-ALI and further clarify the active components of QSYQ, thereby providing a scientific theoretical basis for treating si-ALI with QSYQ.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Late Breaking Abstract - Liraglutide attenuates sepsis-induced endothelial dysfunction and Acute Lung Injury
    Bastarache, Julie
    Baer, Brandon
    Putz, Nathan
    Riedmann, Kyle
    Gonski, Samantha
    Lin, Jason
    Ware, Lorraine
    Toki, Shinji
    Peebles, Stokes
    Cahill, Katherine
    EUROPEAN RESPIRATORY JOURNAL, 2023, 62
  • [22] ENDOTHELIAL CELL PPAR-GAMMA KNOCKOUT EXACERBATES SEPSIS-INDUCED ACUTE LUNG INJURY
    Polu, S. L.
    Reddy, A. T.
    Kleinhenz, J. M.
    Hart, M. C.
    Reddy, R. C.
    JOURNAL OF INVESTIGATIVE MEDICINE, 2012, 60 (01) : 422 - 422
  • [23] Protective Role of Liriodendrin in Sepsis-Induced Acute Lung Injury
    Yang, Lei
    Li, Dihua
    Zhuo, Yuzhen
    Zhang, Shukun
    Wang, Ximo
    Gao, Hongwei
    INFLAMMATION, 2016, 39 (05) : 1805 - 1813
  • [24] Body temperature control in sepsis-induced acute lung injury
    Wang, GC
    Chi, WM
    Perng, WC
    Huang, KL
    CHINESE JOURNAL OF PHYSIOLOGY, 2003, 46 (04): : 151 - 157
  • [25] Autophagy in sepsis-induced acute lung injury: Friend or foe?
    Zhao, Jiayao
    Liang, Qun
    Fu, Chenfei
    Cong, Didi
    Wang, Long
    Xu, Xiaoxin
    CELLULAR SIGNALLING, 2023, 111
  • [26] Liraglutide pretreatment attenuates sepsis-induced acute lung injury
    Baer, Brandon
    Putz, Nathan D.
    Riedmann, Kyle
    Gonski, Samantha
    Lin, Jason
    Ware, Lorraine B.
    Toki, Shinji
    Peebles Jr, R. Stokes
    Cahill, Katherine N.
    Bastarache, Julie A.
    AMERICAN JOURNAL OF PHYSIOLOGY-LUNG CELLULAR AND MOLECULAR PHYSIOLOGY, 2023, 325 (03) : L368 - L384
  • [27] Does leflunomide attenuate the sepsis-induced acute lung injury?
    Erdogan Ozturk
    Semra Demirbilek
    Zekine Begec
    Murat Surucu
    Ersin Fadillioglu
    Hale Kırımlıoglu
    M. Ozcan Ersoy
    Pediatric Surgery International, 2008, 24
  • [28] Rho kinases (ROCKs) in sepsis-induced acute lung injury
    Narain, Ravin
    JOURNAL OF THORACIC DISEASE, 2012, 4 (01) : 12 - 14
  • [29] UNILATERAL VAGOTOMY AGGRAVATES SEPSIS-INDUCED ACUTE LUNG INJURY
    Zhu, X.
    Yu, J.
    Song, Y.
    Bai, C.
    RESPIROLOGY, 2011, 16 : 269 - 269
  • [30] Does leflunomide attenuate the sepsis-induced acute lung injury?
    Ozturk, Erdogan
    Demirbilek, Semra
    Begec, Zekine
    Surucu, Murat
    Fadillioglu, Ersin
    Kirimhoglu, Hale
    Ersoy, M. Ozcan
    PEDIATRIC SURGERY INTERNATIONAL, 2008, 24 (08) : 899 - 905