Preface to the theme issue 'physics-informed machine learning and its structural integrity applications'

被引:0
|
作者
Zhu, Shun-Peng [1 ]
De Jesus, Abilio M. P. [2 ]
Berto, Filippo [3 ]
Michopoulos, John G. [4 ]
Iacoviello, Francesco [5 ]
Wang, Qingyuan [6 ,7 ]
机构
[1] Univ Elect Sci & Technol China, Sch Mech & Elect Engn, Chengdu 611731, Peoples R China
[2] Univ Porto, INEGI, Fac Engn, P-4200465 Porto, Portugal
[3] Sapienza Univ Rome, Dept Chem Engn Mat & Environm, I-00184 Rome, Italy
[4] Naval Res Lab, Computat Multiphys Syst Lab, Ctr Mat Phys & Technol, Washington, DC 20375 USA
[5] Univ Cassino & Southern Lazio, Dept Civil & Mech Engn, Cassino, Italy
[6] Sichuan Univ, Coll Architecture & Environm, MOE Key Lab Deep Earth Sci & Engn, Chengdu 610065, Peoples R China
[7] Chengdu Univ, Adv Res Inst, Chengdu 610106, Peoples R China
关键词
machine learning; physics-informed machine learning; structural integrity; failure mechanism modelling; prognostic and health management; RELIABILITY ASSESSMENT; FATIGUE LIFE; FRAMEWORK; BEHAVIOR; SYSTEMS;
D O I
10.1098/rsta.2023.0176
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The issue focuses on physics-informed machine learning and its applications for structural integrity and safety assessment of engineering systems/facilities. Data science and data mining are fields in fast development with a high potential in several engineering research communities; in particular, advances in machine learning (ML) are undoubtedly enabling significant breakthroughs. However, purely ML models do not necessarily carry physical meaning, nor do they generalize well to scenarios on which they have not been trained on. This is an emerging field of research that potentially will raise a huge impact in the future for designing new materials and structures, and then for their proper final assessment. This issue aims to update the current research state of the art, incorporating physics into ML models, and providing tools when dealing with material science, fatigue and fracture, including new and sophisticated algorithms based on ML techniques to treat data in real-time with high accuracy and productivity.This article is part of the theme issue 'Physics-informed machine learning and its structural integrity applications (Part 1)'.
引用
收藏
页数:3
相关论文
共 50 条
  • [21] Neural Oscillators for Generalization of Physics-Informed Machine Learning
    Kapoor, Taniya
    Chandra, Abhishek
    Tartakovsky, Daniel M.
    Wang, Hongrui
    Nunez, Alfredo
    Dollevoet, Rolf
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 12, 2024, : 13059 - 13067
  • [22] Physics-informed machine learning for programmable photonic circuits
    Teofilovic, Isidora
    Zibar, Darko
    Da Ros, Francesco
    MACHINE LEARNING IN PHOTONICS, 2024, 13017
  • [23] Physics-informed machine learning for moving load problems
    Kapoor, Taniya
    Wang, Hongrui
    Nunez, Alfredo
    Dollevoet, Rolf
    XII INTERNATIONAL CONFERENCE ON STRUCTURAL DYNAMICS, EURODYN 2023, 2024, 2647
  • [24] Probabilistic physics-informed machine learning for dynamic systems
    Subramanian, Abhinav
    Mahadevan, Sankaran
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2023, 230
  • [25] Physics-Informed Extreme Learning Machine Lyapunov Functions
    Zhou, Ruikun
    Fitzsimmons, Maxwell
    Meng, Yiming
    Liu, Jun
    IEEE CONTROL SYSTEMS LETTERS, 2024, 8 : 1763 - 1768
  • [26] Predicting glass structure by physics-informed machine learning
    Bodker, Mikkel L.
    Bauchy, Mathieu
    Du, Tao
    Mauro, John C.
    Smedskjaer, Morten M.
    NPJ COMPUTATIONAL MATERIALS, 2022, 8 (01)
  • [27] Parsimony as the ultimate regularizer for physics-informed machine learning
    J. Nathan Kutz
    Steven L. Brunton
    Nonlinear Dynamics, 2022, 107 : 1801 - 1817
  • [28] Parsimony as the ultimate regularizer for physics-informed machine learning
    Kutz, J. Nathan
    Brunton, Steven L.
    NONLINEAR DYNAMICS, 2022, 107 (03) : 1801 - 1817
  • [29] Physics-Informed Machine Learning for Optical Modes in Composites
    Ghosh, Abantika
    Elhamod, Mohannad
    Bu, Jie
    Lee, Wei-Cheng
    Karpatne, Anuj
    Podolskiy, Viktor A.
    ADVANCED PHOTONICS RESEARCH, 2022, 3 (11):
  • [30] Predicting glass structure by physics-informed machine learning
    Mikkel L. Bødker
    Mathieu Bauchy
    Tao Du
    John C. Mauro
    Morten M. Smedskjaer
    npj Computational Materials, 8