A Priori Error Analysis of Mixed Virtual Element Methods for Optimal Control Problems Governed by Darcy Equation

被引:7
作者
Wang, Xiuhe [1 ]
Wang, Qiming [2 ]
Zhou, Zhaojie [1 ]
机构
[1] Shandong Normal Univ, Sch Math & Stat, Jinan 250014, Peoples R China
[2] Beijing Normal Univ, Sch Math Sci, Zhuhai 519087, Peoples R China
基金
中国国家自然科学基金;
关键词
A priori error estimate; mixed virtual element method; optimal control problem; APPROXIMATION;
D O I
10.4208/eajam.070322.210722
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A mixed virtual element discretization of optimal control problems governed by the Darcy equation with pointwise control constraint is investigated. A discrete scheme uses virtual element approximations of the state equation and a variational discretization of the control variable. A discrete first-order optimality system is obtained by the first-discretize-then-optimize approach. A priori error estimates of the state, adjoint, and control variables are derived. Numerical experiments confirm the theoretical results.
引用
收藏
页码:140 / 161
页数:22
相关论文
共 21 条
[1]   A C1 virtual element method for an elliptic distributed optimal control problem with pointwise state constraints [J].
Brenner, Susanne C. ;
Sung, Li-Yeng ;
Tan, Zhiyu .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2021, 31 (14) :2887-2906
[2]   BASIC PRINCIPLES OF MIXED VIRTUAL ELEMENT METHODS [J].
Brezzi, F. ;
Falk, Richard S. ;
Marini, L. Donatella .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2014, 48 (04) :1227-1240
[3]   A posteriori error estimates for mixed finite element solutions of convex optimal control problems [J].
Chen, Yanping ;
Liu, Wenbin .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 211 (01) :76-89
[4]   Error Estimates and Superconvergence of Mixed Finite Element Methods for Convex Optimal Control Problems [J].
Chen, Yanping ;
Huang, Yunqing ;
Liu, Wenbin ;
Yan, Ningning .
JOURNAL OF SCIENTIFIC COMPUTING, 2010, 42 (03) :382-403
[5]  
da Veiga LB, 2016, NUMER MATH, V133, P303, DOI 10.1007/s00211-015-0746-1
[6]   BASIC PRINCIPLES OF VIRTUAL ELEMENT METHODS [J].
da Veiga, L. Beirao ;
Brezzi, F. ;
Cangiani, A. ;
Manzini, G. ;
Marini, L. D. ;
Russo, A. .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2013, 23 (01) :199-214
[7]   MIXED VIRTUAL ELEMENT METHODS FOR GENERAL SECOND ORDER ELLIPTIC PROBLEMS ON POLYGONAL MESHES [J].
da Veiga, Lourenco Beirao ;
Brezzi, Franco ;
Marini, Luisa Donatella ;
Russo, Alessandro .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2016, 50 (03) :727-747
[8]   Parallel solvers for virtual element discretizations of elliptic equations in mixed form [J].
Dassi, F. ;
Scacchi, S. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2020, 79 (07) :1972-1989
[9]   Convergence of a finite element approximation to a state-constrained elliptic control problem [J].
Deckelnick, Klaus ;
Hinze, Michael .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2007, 45 (05) :1937-1953
[10]   Finite element approximation of elliptic control problems with constraints on the gradient [J].
Deckelnick, Klaus ;
Gunther, Andreas ;
Hinze, Michael .
NUMERISCHE MATHEMATIK, 2009, 111 (03) :335-350