Drug Toxicity Prediction by Machine Learning Approaches

被引:0
作者
Shen, Yucong [1 ]
Shih, Frank Y. [1 ,2 ,3 ]
Chen, Hao [3 ]
机构
[1] New Jersey Inst Technol, Dept Comp Sci, Newark, NJ 07102 USA
[2] Asia Univ, Dept Comp Sci & Informat Engn, Taichung 413, Taiwan
[3] New Jersey Inst Technol, Dept Chem & Environm Sci, Newark, NJ 07102 USA
关键词
Deep learning; toxicity prediction; graph neural networks;
D O I
10.1142/S0218001423510138
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Drug property prediction, especially toxicity, helps reduce risks in a range of real-world applications. In this paper, we aim to apply various machine-learning models for solving the drug toxicity prediction problem. Among various machine-learning approaches, we select five suitable representatives: random forest, multi-layer perceptron, logistic regression, graph convolutional neural network, and graph isomorphism network (GIN) for conducting experiments on six datasets for toxicity prediction, including Tox 21, ClinTox, ToxCast, SIDER, HIV, and BACE. We design the GIN with four hidden layers and select the Adam optimizer with the learning rate 10-4 and the batch size 256. Furthermore, we use a batch norm layer inside each of the GIN hidden layers. Experimental results show that the designed GIN model is most efficient in distinguishing between safe and toxic drugs and outperforms the others under the supervision of ROC AUC score and recall.
引用
收藏
页数:14
相关论文
共 26 条
[1]   Automatic selection of molecular descriptors using random forest: Application to drug discovery [J].
Cano, Gaspar ;
Garcia-Rodriguez, Jose ;
Garcia-Garcia, Alberto ;
Perez-Sanchez, Horacio ;
Benediktsson, Jon Atli ;
Thapa, Anil ;
Barr, Alastair .
EXPERT SYSTEMS WITH APPLICATIONS, 2017, 72 :151-159
[2]  
Duvenaudt D, 2015, ADV NEUR IN, V28
[3]   Geometry-enhanced molecular representation learning for property prediction [J].
Fang, Xiaomin ;
Liu, Lihang ;
Lei, Jiediong ;
He, Donglong ;
Zhang, Shanzhuo ;
Zhou, Jingbo ;
Wang, Fan ;
Wu, Hua ;
Wang, Haifeng .
NATURE MACHINE INTELLIGENCE, 2022, 4 (02) :127-134
[4]   Automatic Chemical Design Using a Data-Driven Continuous Representation of Molecules [J].
Gomez-Bombarelli, Rafael ;
Wei, Jennifer N. ;
Duvenaud, David ;
Hernandez-Lobato, Jose Miguel ;
Sanchez-Lengeling, Benjamin ;
Sheberla, Dennis ;
Aguilera-Iparraguirre, Jorge ;
Hirzel, Timothy D. ;
Adams, Ryan P. ;
Aspuru-Guzik, Alan .
ACS CENTRAL SCIENCE, 2018, 4 (02) :268-276
[5]  
Hamilton W.L., 2017, ARXIV, DOI DOI 10.48550/ARXIV.1709.05584
[6]   Diversity in Neural Architecture Search [J].
Hu, Wenzheng ;
Li, Mingyang ;
Yuan, Changhe ;
Zhang, Changshui ;
Wang, Jianqiang .
2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
[7]   The cornucopia of meaningful leads: Applying deep adversarial autoencoders for new molecule development in oncology [J].
Kadurin, Artur ;
Aliper, Alexander ;
Kazennov, Andrey ;
Mamoshina, Polina ;
Vanhaelen, Quentin ;
Khrabrov, Kuzma ;
Zhavoronkov, Alex .
ONCOTARGET, 2017, 8 (07) :10883-10890
[8]   The SIDER database of drugs and side effects [J].
Kuhn, Michael ;
Letunic, Ivica ;
Jensen, Lars Juhl ;
Bork, Peer .
NUCLEIC ACIDS RESEARCH, 2016, 44 (D1) :D1075-D1079
[9]  
Lu CQ, 2019, AAAI CONF ARTIF INTE, P1052
[10]   DeepTox: Toxicity Prediction using Deep Learning [J].
Mayr, Andreas ;
Klambauer, Gunter ;
Unterthiner, Thomas ;
Hochreiter, Sepp .
FRONTIERS IN ENVIRONMENTAL SCIENCE, 2016, 3