A novel rolling bearing fault diagnosis method based on Adaptive Denoising Convolutional Neural Network under noise background

被引:20
|
作者
Wang, Qiang [1 ]
Xu, Feiyun [1 ,2 ]
机构
[1] Southeast Univ, Sch Mech Engn, Nanjing, Peoples R China
[2] Southeast Univ, 2 Southeast Univ Rd, Nanjing 211189, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Rolling bearing fault diagnosis; Adaptive denoising; Convolutional Neural Network (CNN); Maximum Overlap Discrete Wavelet Packet; Transform (MODWPT); EMPIRICAL MODE DECOMPOSITION; TRANSFORM;
D O I
10.1016/j.measurement.2023.113209
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In recent years, significant progress has been made in intelligent fault diagnosis algorithms for rolling bearings. However, their real industrial application performance is hindered by challenges related to noise and variable load conditions. To solve this problem, we proposed an adaptive denoising convolutional neural network (ADCNN) which integrates adaptive denoising units to remove noise while preserving sensitive fault features, eliminating the need for manual denoising function settings. In addition, we use Maximum Overlap Discrete Wavelet Packet Transform to separate out the interfering components of noisy signal. To further improve ADCNN's noise immunity, we adopt a strategy of gradually decreasing the number of channels and using large convolutional kernels. ADCNN was evaluated alongside the latest methods on two different datasets, and the results demonstrate that ADCNN outperforms other methods both accuracy and robustness. Therefore, our approach presents a promising solution for diagnosing mechanical systems in noisy environments.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Research on rolling bearing fault diagnosis method based on AMVMD and convolutional neural networks
    Zhang, Huichao
    Shi, Peiming
    Han, Dongying
    Jia, Linjie
    MEASUREMENT, 2023, 217
  • [42] Research on a Bearing Fault Enhancement Diagnosis Method with Convolutional Neural Network Based on Adaptive Stochastic Resonance
    Wang, Chen
    Qiao, Zijian
    Huang, Zhangjun
    Xu, Junchen
    Fang, Shitong
    Zhang, Cailiang
    Liu, Jinjun
    Zhu, Ronghua
    Lai, Zhihui
    SENSORS, 2022, 22 (22)
  • [43] Unsupervised rolling bearing fault diagnosis method across working conditions based on multiscale convolutional neural network
    Fu, Haiyue
    Yu, Di
    Zhan, Changshu
    Zhu, Xiangzhen
    Xie, Zhijie
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (03)
  • [44] An Integrated Method of Rolling Bearing Fault Diagnosis Based on Convolutional Neural Network Optimized by Sparrow Optimization Algorithm
    Dong, Shuyuan
    SCIENTIFIC PROGRAMMING, 2022, 2022
  • [45] Research on the seagull optimization algorithm-based convolutional neural network rolling bearing fault diagnosis method
    Xue, Jijun
    Liu, Xiaodong
    Xu, Hao
    Zhang, Di
    ENGINEERING RESEARCH EXPRESS, 2023, 5 (03):
  • [46] Deep transfer learning rolling bearing fault diagnosis method based on convolutional neural network feature fusion
    Yu, Di
    Fu, Haiyue
    Song, Yanchen
    Xie, Wenjian
    Xie, Zhijie
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (01)
  • [47] A novel adaptive and fast deep convolutional neural network for bearing fault diagnosis under different working conditions
    Xu, Kun
    Li, Shunming
    Wang, Jinrui
    An, Zenghui
    Xin, Yu
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART D-JOURNAL OF AUTOMOBILE ENGINEERING, 2020, 234 (04) : 1167 - 1182
  • [48] Improved convolutional capsule network method for rolling bearing fault diagnosis
    Zhao X.-Q.
    Chai J.-X.
    Zhendong Gongcheng Xuebao/Journal of Vibration Engineering, 2024, 37 (05): : 885 - 895
  • [49] A Novel Fault Diagnosis Method of Rolling Bearings Combining Convolutional Neural Network and Transformer
    Liu, Wenkai
    Zhang, Zhigang
    Zhang, Jiarui
    Huang, Haixiang
    Zhang, Guocheng
    Peng, Mingda
    ELECTRONICS, 2023, 12 (08)
  • [50] Rolling bearing fault diagnosis method based on multi-scale pooling residual convolutional neural network under noisy environment
    Lei, Chunli
    Miao, Chengxiang
    Yu, Yongqin
    Wang, Lu
    Wang, Bin
    EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY, 2025, 27 (01):