A novel rolling bearing fault diagnosis method based on Adaptive Denoising Convolutional Neural Network under noise background

被引:20
|
作者
Wang, Qiang [1 ]
Xu, Feiyun [1 ,2 ]
机构
[1] Southeast Univ, Sch Mech Engn, Nanjing, Peoples R China
[2] Southeast Univ, 2 Southeast Univ Rd, Nanjing 211189, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Rolling bearing fault diagnosis; Adaptive denoising; Convolutional Neural Network (CNN); Maximum Overlap Discrete Wavelet Packet; Transform (MODWPT); EMPIRICAL MODE DECOMPOSITION; TRANSFORM;
D O I
10.1016/j.measurement.2023.113209
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In recent years, significant progress has been made in intelligent fault diagnosis algorithms for rolling bearings. However, their real industrial application performance is hindered by challenges related to noise and variable load conditions. To solve this problem, we proposed an adaptive denoising convolutional neural network (ADCNN) which integrates adaptive denoising units to remove noise while preserving sensitive fault features, eliminating the need for manual denoising function settings. In addition, we use Maximum Overlap Discrete Wavelet Packet Transform to separate out the interfering components of noisy signal. To further improve ADCNN's noise immunity, we adopt a strategy of gradually decreasing the number of channels and using large convolutional kernels. ADCNN was evaluated alongside the latest methods on two different datasets, and the results demonstrate that ADCNN outperforms other methods both accuracy and robustness. Therefore, our approach presents a promising solution for diagnosing mechanical systems in noisy environments.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Rolling bearing fault diagnosis based on feature fusion with parallel convolutional neural network
    Liang, Mingxuan
    Cao, Pei
    Tang, J.
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2021, 112 (3-4): : 819 - 831
  • [32] Rolling Bearing Fault Diagnosis Based on Wavelet Packet Transform and Convolutional Neural Network
    Li, Guoqiang
    Deng, Chao
    Wu, Jun
    Chen, Zuoyi
    Xu, Xuebing
    APPLIED SCIENCES-BASEL, 2020, 10 (03):
  • [33] Rolling Bearing Fault Diagnosis Based on Convolutional Neural Network and Support Vector Machine
    Yuan, Laohu
    Lian, Dongshan
    Kang, Xue
    Chen, Yuanqiang
    Zhai, Kejia
    IEEE ACCESS, 2020, 8 : 137395 - 137406
  • [34] Rolling bearing fault diagnosis based on feature fusion with parallel convolutional neural network
    Mingxuan Liang
    Pei Cao
    J. Tang
    The International Journal of Advanced Manufacturing Technology, 2021, 112 : 819 - 831
  • [35] Fault Diagnosis of Rolling Bearing Based on a Novel Adaptive High-Order Local Projection Denoising Method
    Yuan, Rui
    Lv, Yong
    Song, Gangbing
    COMPLEXITY, 2018,
  • [36] Fault diagnosis of rolling bearing based on an improved convolutional neural network using SFLA
    Li Y.
    Ma J.
    Jiang L.
    Zhendong yu Chongji/Journal of Vibration and Shock, 2020, 39 (24): : 187 - 193
  • [37] A rolling bearing fault diagnosis method using novel lightweight neural network
    He, Deqiang
    Liu, Chenyu
    Chen, Yanjun
    Jin, Zhenzhen
    Li, Xianwang
    Shan, Sheng
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2021, 32 (12)
  • [38] Fault Diagnosis of Rolling Bearing Based on S-Transform and Convolutional Neural Network
    Wang Qingrong
    Yang Lei
    Wang Songsong
    LASER & OPTOELECTRONICS PROGRESS, 2021, 58 (22)
  • [39] Intelligent Diagnosis of Rolling Bearing Fault Based on Improved Convolutional Neural Network and LightGBM
    Xu, Yanwei
    Cai, Weiwei
    Wang, Liuyang
    Xie, Tancheng
    SHOCK AND VIBRATION, 2021, 2021
  • [40] Convolutional Neural Network Based Bearing Fault Diagnosis
    Duy-Tang Hoang
    Kang, Hee-Jun
    INTELLIGENT COMPUTING THEORIES AND APPLICATION, ICIC 2017, PT II, 2017, 10362 : 105 - 111