Flow-enhanced transportation for anomaly detection

被引:24
作者
Golling, Tobias [1 ]
Klein, Samuel [1 ]
Mastandrea, Radha [2 ,3 ]
Nachman, Benjamin [3 ,4 ]
机构
[1] Univ Geneva, Dept Phys Nucl & Corpusculaire, 24 Quai Ernest Ansermet, CH-1205 Geneva 4, Switzerland
[2] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[3] Lawrence Berkeley Natl Lab, Phys Div, Berkeley, CA 94720 USA
[4] Univ Calif Berkeley, Berkeley Inst Data Sci, Berkeley, CA 94720 USA
基金
瑞士国家科学基金会; 美国国家科学基金会;
关键词
D O I
10.1103/PhysRevD.107.096025
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Resonant anomaly detection is a promising framework for model-independent searches for new particles. Weakly supervised resonant anomaly detection methods compare data with a potential signal against a template of the Standard Model (SM) background inferred from sideband regions. We propose a means to generate this background template that uses a flow-based model to create a mapping between high-fidelity SM simulations and the data. The flow is trained in sideband regions with the signal region blinded, and the flow is conditioned on the resonant feature (mass) such that it can be interpolated into the signal region. To illustrate this approach, we use simulated collisions from the Large Hadron Collider (LHC) Olympics dataset. We find that our flow-constructed background method has competitive sensitivity with other recent proposals and can therefore provide complementary information to improve future searches.
引用
收藏
页数:13
相关论文
共 32 条
[1]   Benchmark data and model independent event classification for the large hadron collider [J].
Aarrestad, Thea ;
van Beekveld, Melissa ;
Bona, Marcella ;
Boveia, Antonio ;
Caron, Sascha ;
Davies, Joe ;
De Simone, Andrea ;
Doglioni, Caterina ;
Duarte, Javier M. ;
Farbin, Amir ;
Gupta, Honey ;
Hendriks, Luc ;
Heinrich, Lukas A. ;
Howarth, James ;
Jawahar, Pratik ;
Jueid, Adil ;
Lastow, Jessica ;
Leinweber, Adam ;
Mamuzic, Judita ;
Merenyi, Erzsebet ;
Morandini, Alessandro ;
Moskvitina, Polina ;
Nellist, Clara ;
Ngadiuba, Jennifer ;
Ostdiek, Bryan ;
Pierini, Maurizio ;
Ravina, Baptiste ;
de Austri, Roberto R. ;
Sekmen, Sezen ;
Touranakou, Mary ;
Vaskeviciute, Marija ;
Vilalta, Ricardo ;
Vlimant, Jean-Roch ;
Verheyen, Rob ;
White, Martin ;
Wulff, Eric ;
Wallin, Erik ;
Wozniak, Kinga A. ;
Zhang, Zhongyi .
SCIPOST PHYSICS, 2022, 12 (01)
[2]   Tag N' Train: a technique to train improved classifiers on unlabeled data [J].
Amram, Oz ;
Suarez, Cristina Mantilla .
JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (01)
[3]   Simulation assisted likelihood-free anomaly detection [J].
Andreassen, Anders ;
Nachman, Benjamin ;
Shih, David .
PHYSICAL REVIEW D, 2020, 101 (09)
[4]   Herwig plus plus physics and manual [J].
Baehr, Manuel ;
Gieseke, Stefan ;
Gigg, Martyn A. ;
Grellscheid, David ;
Hamilton, Keith ;
Latunde-Dada, Oluseyi ;
Platzer, Simon ;
Richardson, Peter ;
Seymour, Michael H. ;
Sherstnev, Alexander ;
Webber, Bryan R. .
EUROPEAN PHYSICAL JOURNAL C, 2008, 58 (04) :639-707
[5]   Simulation-assisted decorrelation for resonant anomaly detection [J].
Benkendorfer, Kees ;
Le Pottier, Luc ;
Nachman, Benjamin .
PHYSICAL REVIEW D, 2021, 104 (03)
[6]  
Choi S., 2020, arXiv
[7]  
CMS Collaboration, 2022, Report No. CMS-PAS-TOP-21-005
[8]   Anomaly Detection for Resonant New Physics with Machine Learning [J].
Collins, Jack ;
Howe, Kiel ;
Nachman, Benjamin .
PHYSICAL REVIEW LETTERS, 2018, 121 (24)
[9]   Extending the search for new resonances with machine learning [J].
Collins, Jack H. ;
Howe, Kiel ;
Nachman, Benjamin .
PHYSICAL REVIEW D, 2019, 99 (01)
[10]   DELPHES 3: a modular framework for fast simulation of a generic collider experiment [J].
de Favereau, J. ;
Delaere, C. ;
Demi, P. ;
Giammanco, A. ;
Lemaitre, V. ;
Mertens, A. ;
Selvaggi, M. .
JOURNAL OF HIGH ENERGY PHYSICS, 2014, (02)