Stability signatures for porous thermoelasticity with microtemperature and without temperature

被引:1
|
作者
Ramos, A. J. A. [1 ,4 ]
Almelda Junior, D. S. [2 ]
Aouadi, M. [3 ]
Freitas, M. M. [1 ]
Barbosa, R. C. [2 ]
机构
[1] Fed Univ Para, Fac Math, Salinopolis, PA, Brazil
[2] Fed Univ Para, Belem, PA, Brazil
[3] Univ Carthage, Ecole Natl Ingenieurs Bizerte & UR Syst dynam & ap, Bizerte, Tunisia
[4] Fed Univ Para, Fac Math, Rua Raimundo Santana,S-N, BR-68721000 Salinopolis, PA, Brazil
关键词
Thermoelastic systems; second sound; well-posedness; exponential decay; polynomial decay; SYSTEM; DECAY;
D O I
10.1177/10812865231166599
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, we provide necessary and sufficient conditions for obtaining the stabilization properties for the one-dimensional Lord-Shulman thermoelastic theory with porosity subject to microtemperature but without temperature where the microtemperature conduction equations are governed by Cattaneo-Maxwell's law. Based on recent results due to Bazarra et al., we introduce a stability number ?(0) involving all coefficients of the system, and we prove that the exponential decay of the corresponding semigroup holds if and only if ?(0) = 0 . Otherwise, we show that the system loses exponential stability and its solution decays polynomially with a rate equal to 1 /vt .
引用
收藏
页码:2436 / 2457
页数:22
相关论文
共 50 条
  • [41] Exponential stability of a laminated beam system with thermoelasticity of type III and distributed delay
    Mpungu, Kassimu
    QUAESTIONES MATHEMATICAE, 2024, 47 (01) : 1 - 19
  • [42] On the stability of swelling porous thermoelastic soils mixture with second sound
    Foughali, Fouzia
    Bouzettouta, Lamine
    Khochemane, Houssem Eddine
    Zitouni, Salah
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2024, 30 (02):
  • [43] Asymptotic behaviour and exponential stability for a transmission problem in thermoelasticity
    Marzocchi, A
    Rivera, JEM
    Naso, MG
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2002, 25 (11) : 955 - 980
  • [44] Exponential stability in one-dimensional non-linear thermoelasticity with second sound
    Messaoudi, SA
    Said-Houari, B
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2005, 28 (02) : 205 - 232
  • [45] A stability result of a Timoshenko system in thermoelasticity of second sound with a delay term in the internal feedback
    Ouchenane, Djamel
    GEORGIAN MATHEMATICAL JOURNAL, 2014, 21 (04) : 475 - 489
  • [46] Uniform Stability of Second Sound Thermoelasticity with Distributed Delay
    Muhammad I. Mustafa
    Differential Equations and Dynamical Systems, 2021, 29 : 597 - 608
  • [47] STABILITY OF NON-CLASSICAL THERMOELASTICITY MIXTURE PROBLEMS
    Alves, Margareth S.
    Monteiro, Rodrigo N.
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2020, 19 (10) : 4879 - 4898
  • [48] Uniqueness and existence theorems in thermoelasticity with voids without energy dissipation
    Aouadi, Moncef
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2012, 349 (01): : 128 - 139
  • [49] Polynomial stability for the equations of porous elasticity in one-dimensional bounded domains
    Almeida Junior, D. S.
    Ramos, A. J. A.
    Freitas, M. M.
    Dos Santos, M. J.
    El Arwadi, T.
    MATHEMATICS AND MECHANICS OF SOLIDS, 2022, 27 (02) : 308 - 318
  • [50] On the stability of a double porous elastic system with visco-porous damping
    Nemsi, Aicha
    Keddi, Ahmed
    Fareh, Abdelfeteh
    JOURNAL OF APPLIED ANALYSIS, 2024,