Stability signatures for porous thermoelasticity with microtemperature and without temperature

被引:1
|
作者
Ramos, A. J. A. [1 ,4 ]
Almelda Junior, D. S. [2 ]
Aouadi, M. [3 ]
Freitas, M. M. [1 ]
Barbosa, R. C. [2 ]
机构
[1] Fed Univ Para, Fac Math, Salinopolis, PA, Brazil
[2] Fed Univ Para, Belem, PA, Brazil
[3] Univ Carthage, Ecole Natl Ingenieurs Bizerte & UR Syst dynam & ap, Bizerte, Tunisia
[4] Fed Univ Para, Fac Math, Rua Raimundo Santana,S-N, BR-68721000 Salinopolis, PA, Brazil
关键词
Thermoelastic systems; second sound; well-posedness; exponential decay; polynomial decay; SYSTEM; DECAY;
D O I
10.1177/10812865231166599
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, we provide necessary and sufficient conditions for obtaining the stabilization properties for the one-dimensional Lord-Shulman thermoelastic theory with porosity subject to microtemperature but without temperature where the microtemperature conduction equations are governed by Cattaneo-Maxwell's law. Based on recent results due to Bazarra et al., we introduce a stability number ?(0) involving all coefficients of the system, and we prove that the exponential decay of the corresponding semigroup holds if and only if ?(0) = 0 . Otherwise, we show that the system loses exponential stability and its solution decays polynomially with a rate equal to 1 /vt .
引用
收藏
页码:2436 / 2457
页数:22
相关论文
共 50 条
  • [21] Well posedness and stability result of Lord-Shulman system with microtemperature effects: The case ξμ∗ = μ02
    Boudeliou, Marwa
    Djebabla, Abdelhak
    Apalara, Tijani A.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (10) : 8171 - 8186
  • [22] Stabilization of a Microtemperature Porous-Elastic System with Distributed Delay-Time
    Hebhoub, Fahima
    Bouzettouta, Lamine
    Ghennam, Karima
    Kibech, Khoudir
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2022, 19 (05)
  • [23] Stability and analyticity analysis in nonlocal Mindlin's strain gradient thermoelasticity with voids and second sound
    Aouadi, Moncef
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2022, 73 (05):
  • [24] Spectrum and stability analysis for a transmission problem in thermoelasticity with a concentrated mass
    Han, Zhong-Jie
    Xu, Gen-Qi
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2015, 66 (04): : 1717 - 1736
  • [25] On the Porous-Elastic System with Thermoelasticity of Type III and Distributed Delay: Well-Posedness and Stability
    Ouchenane, Djamel
    Choucha, Abdelbaki
    Abdalla, Mohamed
    Boulaaras, Salah Mahmoud
    Cherif, Bahri Belkacem
    JOURNAL OF FUNCTION SPACES, 2021, 2021
  • [26] Uniqueness and stability of an inverse kernel problem for type III thermoelasticity
    Wu, Bin
    Yu, Jun
    Wang, Zewen
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 402 (01) : 242 - 254
  • [27] Analysis for the strain gradient theory of porous thermoelasticity
    Fernandez, J. R.
    Magana, A.
    Masid, M.
    Quintanilla, R.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2019, 345 : 247 - 268
  • [29] A uniform stability result for thermoelasticity of type III with boundary distributed delay
    Mustafa, Muhammad I.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 415 (01) : 148 - 158
  • [30] Exponential stability of Timoshenko beams with three-phase-lag thermoelasticity
    Bouraoui, Hamed Abderrahmane
    Djebabla, Abdelhak
    Souahi, Abdourazek
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2024, 168 : 58 - 83