Stability signatures for porous thermoelasticity with microtemperature and without temperature

被引:1
|
作者
Ramos, A. J. A. [1 ,4 ]
Almelda Junior, D. S. [2 ]
Aouadi, M. [3 ]
Freitas, M. M. [1 ]
Barbosa, R. C. [2 ]
机构
[1] Fed Univ Para, Fac Math, Salinopolis, PA, Brazil
[2] Fed Univ Para, Belem, PA, Brazil
[3] Univ Carthage, Ecole Natl Ingenieurs Bizerte & UR Syst dynam & ap, Bizerte, Tunisia
[4] Fed Univ Para, Fac Math, Rua Raimundo Santana,S-N, BR-68721000 Salinopolis, PA, Brazil
关键词
Thermoelastic systems; second sound; well-posedness; exponential decay; polynomial decay; SYSTEM; DECAY;
D O I
10.1177/10812865231166599
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, we provide necessary and sufficient conditions for obtaining the stabilization properties for the one-dimensional Lord-Shulman thermoelastic theory with porosity subject to microtemperature but without temperature where the microtemperature conduction equations are governed by Cattaneo-Maxwell's law. Based on recent results due to Bazarra et al., we introduce a stability number ?(0) involving all coefficients of the system, and we prove that the exponential decay of the corresponding semigroup holds if and only if ?(0) = 0 . Otherwise, we show that the system loses exponential stability and its solution decays polynomially with a rate equal to 1 /vt .
引用
收藏
页码:2436 / 2457
页数:22
相关论文
共 50 条
  • [1] On the decay of a porous thermoelastic system with microtemperature
    Ahmima, Afaf
    Fareh, Abdelfeteh
    RICERCHE DI MATEMATICA, 2023, 74 (1) : 1 - 18
  • [2] Stabilization for an inhomogeneous porous-elastic system with temperature and microtemperature
    Feng, Baowei
    Yan, Ling
    Almeida Junior, Dilberto da Silva
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2021, 101 (06):
  • [3] Polynomial stability for Lord-Shulman porous elasticity with microtemperature and strong time delay
    Ramos, Anderson J. A.
    Araujo, Anderson L. A.
    Freitas, Mirelson M.
    Santos, Manoel J. Dos
    Noe, Alberto S.
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2024, 104 (07):
  • [4] Well-posedness and exponential stability in nonlocal theory of nonsimple porous thermoelasticity
    Aouadi, Moncef
    Ciarletta, Michele
    Tibullo, Vincenzo
    MECCANICA, 2024, 59 (10) : 1797 - 1815
  • [5] On the decay of a porous thermoelasticity type III with constant delay
    Nid, Zineb
    Fareh, Abdelfeteh
    Apalara, Tijani A.
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2023, 117 (02)
  • [6] NEW STABILITY NUMBER OF THE TIMOSHENKO SYSTEM WITH ONLY MICROTEMPERATURE EFFECTS AND WITHOUT THERMAL CONDUCTIVITY
    Meradji, S.
    Boudeliou, M.
    Djebabla, A.
    EURASIAN JOURNAL OF MATHEMATICAL AND COMPUTER APPLICATIONS, 2024, 12 (01): : 94 - 109
  • [7] Well-Posedness and Exponential Stability of Swelling Porous with Gurtin-Pipkin Thermoelasticity
    Apalara, Tijani Abdul-Aziz
    Almutairi, Ohud Bulayhan
    MATHEMATICS, 2022, 10 (23)
  • [8] Well-Posedness and Stability Results for Lord Shulman Swelling Porous Thermo-Elastic Soils with Microtemperature and Distributed Delay
    Choucha, Abdelbaki
    Boulaaras, Salah
    Jan, Rashid
    AbaOud, Mohammed
    Alrajhi, Rowaida
    MATHEMATICS, 2023, 11 (23)
  • [9] On the stabilization of linear porous elastic materials by microtemperature effect and porous damping
    Dridi H.
    Djebabla A.
    ANNALI DELL'UNIVERSITA' DI FERRARA, 2020, 66 (1) : 13 - 25
  • [10] Stability in constrained temperature-rate-dependent thermoelasticity
    Alharbi, Amnah M.
    Scott, Nigel H.
    MATHEMATICS AND MECHANICS OF SOLIDS, 2017, 22 (08) : 1738 - 1763