Variational Bayesian multinomial probit model with Gaussian process classification on mice protein expression level data

被引:1
|
作者
Son, Donghyun [1 ]
Hwang, Beom Seuk [1 ,2 ]
机构
[1] Chung Ang Univ, Dept Appl Stat, Seoul, South Korea
[2] Chung Ang Univ, Dept Appl Stat, 84 Heukseok Ro, Seoul, South Korea
基金
新加坡国家研究基金会;
关键词
variational Bayesian approximation; Gaussian process; multinomial probit model; latent variable; REGRESSION;
D O I
10.5351/KJAS.2023.36.2.115
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Multinomial probit model is a popular model for multiclass classification and choice model. Markov chain Monte Carlo (MCMC) method is widely used for estimating multinomial probit model, but its computational cost is high. However, it is well known that variational Bayesian approximation is more computationally efficient than MCMC, because it uses subsets of samples. In this study, we describe multinomial probit model with Gaussian process classification and how to employ variational Bayesian approximation on the model. This study also compares the results of variational Bayesian multinomial probit model to the results of naive Bayes, K-nearest neighbors and support vector machine for the UCI mice protein expression level data.
引用
收藏
页数:14
相关论文
共 40 条
  • [1] Variational Bayesian multinomial probit regression with gaussian process priors
    Girolami, Mark
    Rogers, Simon
    NEURAL COMPUTATION, 2006, 18 (08) : 1790 - 1817
  • [2] Variational Bayesian multinomial logistic Gaussian process classification
    Cho, Wanhyun
    Na, Inseop
    Kim, Sangkyoon
    Park, Soonyoung
    MULTIMEDIA TOOLS AND APPLICATIONS, 2018, 77 (14) : 18563 - 18582
  • [3] Variational Bayesian multinomial logistic Gaussian process classification
    Wanhyun Cho
    Inseop Na
    Sangkyoon Kim
    Soonyoung Park
    Multimedia Tools and Applications, 2018, 77 : 18563 - 18582
  • [4] Nested Expectation Propagation for Gaussian Process Classification with a Multinomial Probit Likelihood
    Riihimaki, Jaakko
    Jylanki, Pasi
    Vehtari, Aki
    JOURNAL OF MACHINE LEARNING RESEARCH, 2013, 14 : 75 - 109
  • [5] vbmp: Variational Bayesian multinomial probit regression for multi-class classification in R
    Lama, Nicola
    Girolami, Mark
    BIOINFORMATICS, 2008, 24 (01) : 135 - 136
  • [6] A BAYESIAN MULTINOMIAL PROBIT MODEL FOR THE ANALYSIS OF PANEL CHOICE DATA
    Fong, Duncan K. H.
    Kim, Sunghoon
    Chen, Zhe
    DeSarbo, Wayne S.
    PSYCHOMETRIKA, 2016, 81 (01) : 161 - 183
  • [7] A Bayesian Multinomial Probit MODEL FOR THE ANALYSIS OF PANEL CHOICE DATA
    Duncan K. H. Fong
    Sunghoon Kim
    Zhe Chen
    Wayne S. DeSarbo
    Psychometrika, 2016, 81 : 161 - 183
  • [8] Sparse bayesian kernel multinomial probit regression model for high-dimensional data classification
    Yang, Aijun
    Jiang, Xuejun
    Shu, Lianjie
    Liu, Pengfei
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2019, 48 (01) : 165 - 176
  • [9] Multiclass Data Classification Using Multinomial Logistic Gaussian Process Model
    Cho, Wanhyun
    Park, Soonyoung
    Kim, Sangkyoon
    ADVANCES IN COMPUTER SCIENCE AND UBIQUITOUS COMPUTING, 2018, 474 : 126 - 130
  • [10] Sparse Bayesian multinomial probit regression model with correlation prior for high-dimensional data classification
    Yang Aijun
    Jiang Xuejun
    Liu Pengfei
    Lin Jinguan
    STATISTICS & PROBABILITY LETTERS, 2016, 119 : 241 - 247