Fanconi anemia, Part 2. Methodological strategy for molecular diagnosis in patients with Fanconi anemia

被引:0
作者
Torres, Leda [1 ]
Juarez, Ulises [1 ,2 ]
Reyes, Pedro [1 ,2 ]
Frias, Sara [1 ,3 ]
机构
[1] Inst Nacl Pediat, Lab Citogenet, Mexico City, Mexico
[2] Univ Nacl Autonoma Mexico, Programa Doctorado & Ciencias Biomed, Mexico City, Mexico
[3] Univ Nacl Autonoma Mexico, Dept Med Genomica Toxicol Ambiental y, Inst Invest Biomed, Mexico City, Mexico
来源
ACTA PEDIATRICA DE MEXICO | 2023年 / 44卷 / 01期
关键词
Fanconi anemia; Pathogenic variants; FANC genes; MLPA; Next generation sequencing; Genotyping strategy; LONG CONTIGUOUS STRETCHES; MEDICAL GENETICS; AMERICAN-COLLEGE; SEQUENCE VARIANTS; GUIDELINES; MUTATIONS; STANDARDS; HOMOZYGOSITY; ASSOCIATION; RECOMMENDATION;
D O I
10.18233/APM44No1pp29-552548
中图分类号
R72 [儿科学];
学科分类号
100202 ;
摘要
Fanconi anemia (FA) is a rare disease occurring in 1-5/million live births. Patients present chromosomal instability at the cellular level, which is the basis for their diagnosis, and although clinically they are heterogeneous, there are three general characteristics: alterations in physical development, pancytopenia and high risk of cancer development. To date, 22 genes responsible for FA have been reported, 20 of which are inherited in an autosomal recessive pattern, one autosomal dominant and one X-linked; how-ever, there are genes to be detected, since despite a thorough search, the responsible pathogenic variant cannot be found in all patients. Due to this heterogeneity, the molecular diagnosis is complicated, so a strategy with several methodologies, such as multiple ligand-dependent probe amplification assay (MLPA) and next-generation sequencing, either by directed panel (16 FANC genes) or by whole exome sequencing and high-resolution microarrays, is necessary. With these methodologies, it is possible to detect long deletions or duplications in FANC genes, single nucleotide and copy number alterations, and long regions with homozygosity to find homozygous alleles. In this article, we present a detailed strategy for genotyping Mexican FA patients, with a success rate of 80%.
引用
收藏
页码:29 / 55
页数:27
相关论文
共 52 条
[21]   Next-generation sequencing technologies: An overview [J].
Hu, Taishan ;
Chitnis, Nilesh ;
Monos, Dimitri ;
Dinh, Anh .
HUMAN IMMUNOLOGY, 2021, 82 (11) :801-811
[22]  
Ikeda H, 2003, CANCER RES, V63, P2688
[23]   Association of clinical severity with FANCB variant type in Fanconi anemia [J].
Jung, Moonjung ;
Ramanagoudr-Bhojappa, Ramanagouda ;
van Twest, Sylvie ;
Rosti, Rasim Ozgur ;
Murphy, Vincent ;
Tan, Winnie ;
Donovan, Frank X. ;
Lach, Francis P. ;
Kimble, Danielle C. ;
Jiang, Caroline S. ;
Vaughan, Roger ;
Mehta, Parinda A. ;
Pierri, Filomena ;
Dufour, Carlo ;
Auerbach, Arleen D. ;
Deans, Andrew J. ;
Smogorzewska, Agata ;
Chandrasekharappa, Settara C. .
BLOOD, 2020, 135 (18) :1588-1602
[24]   Hypomorphic mutations in the gene encoding a key Fanconi anemia protein, FANCD2, sustain a significant group of FA-D2 patients with severe phenotype [J].
Kalb, Reinhard ;
Neveling, Kornelia ;
Hoehn, Holger ;
Schneider, Hildegard ;
Linka, Yvonne ;
Batish, Sat Dev ;
Hunt, Curtis ;
Berwick, Marianne ;
Callen, Elsa ;
Surralles, Jordi ;
Casado, Jose A. ;
Bueren, Juan ;
Dasi, Angeles ;
Soulier, Jean ;
Gluckman, Eliane ;
Zwaan, C. Michel ;
van Spaendonk, Rosalina ;
Pals, Gerard ;
de Winter, Johan P. ;
Joenje, Hans ;
Grompe, Markus ;
Auerbach, Arleen D. ;
Hanenberg, Helmut ;
Schindler, Detlev .
AMERICAN JOURNAL OF HUMAN GENETICS, 2007, 80 (05) :895-910
[25]   American College of Medical Genetics standards and guidelines for interpretation and reporting of postnatal constitutional copy number variants [J].
Kearney, Hutton M. ;
Thorland, Erik C. ;
Brown, Kerry K. ;
Quintero-Rivera, Fabiola ;
South, Sarah T. .
GENETICS IN MEDICINE, 2011, 13 (07) :680-685
[26]   A comprehensive approach to identification of pathogenic FANCA variants in Fanconi anemia patients and their families [J].
Kimble, Danielle C. ;
Lach, Francis P. ;
Gregg, Siobhan Q. ;
Donovan, Frank X. ;
Flynn, Elizabeth K. ;
Kamat, Aparna ;
Young, Alice ;
Vemulapalli, Meghana ;
Thomas, James W. ;
Mullikin, James C. ;
Auerbach, Arleen D. ;
Smogorzewska, Agata ;
Chandrasekharappa, Settara C. .
HUMAN MUTATION, 2018, 39 (02) :237-254
[27]  
Kumar Anil, 2015, Methods Mol Biol, V1275, P143, DOI 10.1007/978-1-4939-2365-6_10
[28]   Long contiguous stretches of homozygosity in the human genome [J].
Li, Ling-Hui ;
Ho, Sheng-Feng ;
Chen, Chien-Hsiun ;
Wei, Chun-Yu ;
Wong, Wan-Ching ;
Li, Li-Ying ;
Hung, Shuen-Iu ;
Chung, Wen-Hung ;
Pan, Wen-Han ;
Lee, Ming-Ta M. ;
Tsai, Fuu-Jen ;
Chang, Ching-Fen ;
Wu, Jer-Yuarn ;
Chen, Yuan-Tsong .
HUMAN MUTATION, 2006, 27 (11) :1115-1121
[29]   Guidelines for diagnostic next-generation sequencing [J].
Matthijs, Gert ;
Souche, Erika ;
Alders, Marielle ;
Corveleyn, Anniek ;
Eck, Sebastian ;
Feenstra, Ilse ;
Race, Valerie ;
Sistermans, Erik ;
Sturm, Marc ;
Weiss, Marjan ;
Yntema, Helger ;
Bakker, Egbert ;
Scheffer, Hans ;
Bauer, Peter .
EUROPEAN JOURNAL OF HUMAN GENETICS, 2016, 24 (01) :2-5
[30]   Next-Generation Sequencing Technologies [J].
McCombie, W. Richard ;
McPherson, John D. ;
Mardis, Elaine R. .
COLD SPRING HARBOR PERSPECTIVES IN MEDICINE, 2019, 9 (11)