Regularity of powers of cover ideals of bipartite graphs

被引:0
作者
Hang, Nguyen Thu [1 ,2 ]
Hien, Truong Thi [3 ]
机构
[1] Thai Nguyen Univ Sci, Tan Thinh Ward, Thai Nguyen City, Thai Nguyen, Vietnam
[2] Int Ctr Res & Postgrad Training Math, 18B Hoang Quoc Viet St, Hanoi, Vietnam
[3] Hong Duc Univ, Dong Ve Ward, 565 Quang Trung St, Thanh Hoa, Vietnam
关键词
Graph; cover ideal; power of ideal; regularity; ASYMPTOTIC-BEHAVIOR; DEPTH;
D O I
10.1142/S0218196723500169
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G = (V,E) be a bipartite graph over the vertex set V = {1, .....,r} and let J = J(G) be the cover ideal of G in the polynomial ring R = K[x(1),.... ,x(r]). It is known that there are integers b and t0 such that regJ(t) = d(J)t + b is a linear function in t for all t >= t(0). In this paper, we give effective bounds for b and t(0).
引用
收藏
页码:317 / 335
页数:19
相关论文
共 30 条
  • [1] REGULARITY OF POWERS OF EDGE IDEALS OF UNICYCLIC GRAPHS
    Alilooee, Ali
    Beyarslan, Selvi Kara
    Selvaraja, S.
    [J]. ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2019, 49 (03) : 699 - 728
  • [2] Banerjee A., 2020, Algebraic Combin., V3, P839
  • [3] The regularity of powers of edge ideals
    Banerjee, Arindam
    [J]. JOURNAL OF ALGEBRAIC COMBINATORICS, 2015, 41 (02) : 303 - 321
  • [4] Berge C., 1989, HYPERGRAPHS COMBINAT
  • [5] Berlekamp D, 2012, MATH RES LETT, V19, P109
  • [6] Regularity of powers of forests and cycles
    Beyarslan, Selvi
    Ha, Huy Tai
    Tran Nam Trung
    [J]. JOURNAL OF ALGEBRAIC COMBINATORICS, 2015, 42 (04) : 1077 - 1095
  • [7] Bondy J.A., 2008, Grad. Texts in Math, V244
  • [8] Powers of ideals and the cohomology of stalks and fibers of morphisms
    Chardin, Marc
    [J]. ALGEBRA & NUMBER THEORY, 2013, 7 (01) : 1 - 18
  • [9] Asymptotic behaviour of the Castelnuovo-Mumford regularity
    Cutkosky, SD
    Herzog, J
    Trung, NV
    [J]. COMPOSITIO MATHEMATICA, 1999, 118 (03) : 243 - 261
  • [10] NOTES ON REGULARITY STABILIZATION
    Eisenbud, David
    Ulrich, Bernd
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 140 (04) : 1221 - 1232