Hankel and Toeplitz operators, block matrices and derivations

被引:0
作者
Harte, Robin [1 ]
Ko, Eungil [2 ]
Lee, Ji Eun [3 ]
机构
[1] Trinity Coll Dublin, Sch Math, Dublin, Ireland
[2] Ewha Womans Univ, Dept Math, Seoul 03760, South Korea
[3] Sejong Univ, Dept Math & Stat, Seoul 05006, South Korea
基金
新加坡国家研究基金会;
关键词
Hankel operator; Toeplitz operator; Block matrix; Derivation; HYPONORMALITY;
D O I
10.2298/FIL2310091H
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Hankel and Toeplitz operators are the compressions of Laurent and bilateral Hankel operators, which in turn can be presented as two-by-two operator matrices with Toeplitz and Hankel entries.
引用
收藏
页码:3091 / 3104
页数:14
相关论文
共 14 条
[1]  
Avendano RM., 2007, INTRO OPERATORS HARD
[2]  
Axler S, 2010, OPER THEORY ADV APPL, V207, P125
[3]  
Brown A., 1963, J. Reine Angew. Math., V213, P89
[4]  
COBURN LA, 1966, MICH MATH J, V13, P285
[5]   HYPONORMALITY OF TOEPLITZ-OPERATORS [J].
COWEN, CC .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 103 (03) :809-812
[6]  
Curto R., 1988, Oper Theory Adv Appl, V35, P1
[7]  
Douglas R.G., 1998, Graduate Texts in Mathematics, V179
[8]  
Halmos P. R., 1982, Hilbert space problem book
[9]   Adjugates in Banach algebras [J].
Harte, R ;
Hernández, C .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 134 (05) :1397-1404
[10]  
Harte R. E., 2014, SPECTRAL MAPPING THE