Hybrid quantum nanophotonic devices with color centers in nanodiamonds [Invited]

被引:14
作者
Sahoo, Swetapadma [1 ,2 ,3 ]
Davydov, Valery A. [4 ]
Agafonov, Viatcheslav N. [5 ]
Bogdanov, Simeon I. [1 ,2 ,3 ]
机构
[1] Univ Illinois, Dept Elect & Comp Engn, Urbana, IL 60801 USA
[2] Univ Illinois, Nick Holonyak Jr Micro & Nanotechnol Lab, Urbana, IL 61801 USA
[3] Univ Illinois, Illinois Quantum Informat Sci & Technol Ctr, Urbana, IL 61801 USA
[4] Russian Acad Sci, LF Vereshchagin Inst High Pressure Phys, Troitsk 142190, Moscow, Russia
[5] Univ Tours, GREMAN, CNRS, UMR 7347, F-37200 Tours, France
关键词
NITROGEN-VACANCY CENTERS; DIAMOND NANOCRYSTALS; SPONTANEOUS EMISSION; MATERIAL PLATFORMS; HIGH-PRESSURE; WAVE-GUIDE; SI-V; FLUORESCENCE; GRAPHITE; BRIGHT;
D O I
10.1364/OME.471376
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Optically active color centers in nanodiamonds offer unique opportunities for generating and manipulating quantum states of light. These mechanically, chemically, and optically robust emitters can be produced in mass quantities, deterministically manipulated, and integrated with a variety of quantum device geometries and photonic material platforms. Nanodiamonds with deeply sub-wavelength sizes coupled to nanophotonic structures feature a giant enhancement of light-matter interaction, promising high bitrates in quantum photonic systems. We review the recent advances in controlled techniques for synthesizing, selecting, and manipulating nanodiamond-based color centers for their integration with quantum nanophotonic devices.
引用
收藏
页码:191 / 217
页数:27
相关论文
共 240 条
  • [1] Electrical Tuning of Tin-Vacancy Centers in Diamond
    Aghaeimeibodi, Shahriar
    Riedel, Daniel
    Rugar, Alison E.
    Dory, Constantin
    Vuckovic, Jelena
    [J]. PHYSICAL REVIEW APPLIED, 2021, 15 (06):
  • [2] Diamond-based single-photon emitters
    Aharonovich, I.
    Castelletto, S.
    Simpson, D. A.
    Su, C-H
    Greentree, A. D.
    Prawer, S.
    [J]. REPORTS ON PROGRESS IN PHYSICS, 2011, 74 (07)
  • [3] Aharonovich I, 2016, NAT PHOTONICS, V10, P631, DOI [10.1038/nphoton.2016.186, 10.1038/NPHOTON.2016.186]
  • [4] Aharonovich I, 2011, NAT PHOTONICS, V5, P397, DOI [10.1038/NPHOTON.2011.54, 10.1038/nphoton.2011.54]
  • [5] Akselrod GM, 2014, NAT PHOTONICS, V8, P835, DOI [10.1038/nphoton.2014.228, 10.1038/NPHOTON.2014.228]
  • [6] Self-assembling hybrid diamond-biological quantum devices
    Albrecht, A.
    Koplovitz, G.
    Retzker, A.
    Jelezko, F.
    Yochelis, S.
    Porath, D.
    Nevo, Y.
    Shoseyov, O.
    Paltiel, Y.
    Plenio, M. B.
    [J]. NEW JOURNAL OF PHYSICS, 2014, 16
  • [7] Fluorescent nanodiamonds: past, present, and future
    Alkahtani, Masfer H.
    Alghannam, Fahad
    Jiang, Linkun
    Almethen, Abdulrahman
    Rampersaud, Arfaan A.
    Brick, Robert
    Gomes, Carmen L.
    Scully, Marlan O.
    Hemmer, Philip R.
    [J]. NANOPHOTONICS, 2018, 7 (08) : 1423 - 1453
  • [8] Nano-manipulation of diamond-based single photon sources
    Ampem-Lassen, E.
    Simpson, D. A.
    Gibson, B. C.
    Trpkovski, S.
    Hossain, F. M.
    Huntington, S. T.
    Ganesan, K.
    Hollenberg, L. C. L.
    Prawer, S.
    [J]. OPTICS EXPRESS, 2009, 17 (14): : 11287 - 11293
  • [9] Ultrabright Linearly Polarized Photon Generation from a Nitrogen Vacancy Center in a Nanocube Dimer Antenna
    Andersen, Sebastian K. H.
    Kumar, Shailesh
    Bozhevolnyi, Sergey I.
    [J]. NANO LETTERS, 2017, 17 (06) : 3889 - 3895
  • [10] Material platforms for spin-based photonic quantum technologies
    Atature, Mete
    Englund, Dirk
    Vamivakas, Nick
    Lee, Sang-Yun
    Wrachtrup, Joerg
    [J]. NATURE REVIEWS MATERIALS, 2018, 3 (05): : 38 - 51