LIMIT CYCLES IN A SWITCHING LIENARD SYSTEM

被引:0
|
作者
Wang, Xiangyu [1 ]
Guo, Laigang [2 ]
机构
[1] Beihang Univ, Sch Math Sci, Beijing 100191, Peoples R China
[2] Beijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst, MOE, Beijing 100875, Peoples R China
来源
关键词
Lienard system; switching lines; Lyapunov constant; center; limit cycle;
D O I
10.3934/dcdsb.2022132
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
ABSTRACT. In this paper, we consider a class of quadratic switching Lie ' nard systems with three switching lines. We give an algorithm for computing the Lyapunov constants of this system. Based on this method, we obtain a center condition and three limit cycles bifurcating from the focus (0, 0). Further, an example of quadratic switching systems is constructed to show the existence of six limit cycles bifurcating from the center. This is a new low bound on the maximal number of small-amplitude limit cycles obtained in such quadratic switching systems.
引用
收藏
页码:1503 / 1512
页数:10
相关论文
共 50 条
  • [1] The uniqueness of limit cycles for Lienard system
    Zhou, YR
    Wang, CW
    Blackmore, D
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 304 (02) : 473 - 489
  • [2] LIMIT CYCLES FOR A CUBIC GENERALIZED LIENARD SYSTEM
    Zhao, Jinyuan
    Li, Jun
    Wu, Kuilin
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2025,
  • [3] On the Uniqueness of Limit Cycles in a Generalized Lienard System
    Zhang Daoxiang
    Ping Yan
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2019, 18 (03) : 1191 - 1199
  • [4] Small amplitude limit cycles for the polynomial Lienard system
    Borodzik, Maciej
    Zoladek, Henryk
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2008, 245 (09) : 2522 - 2533
  • [5] Limit cycles of a Lienard system with symmetry allowing for discontinuity
    Chen, Hebai
    Han, Maoan
    Xia, Yong-Hui
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 468 (02) : 799 - 816
  • [6] Limit cycles of Lienard systems
    Amar, M
    Sabrina, B
    PROCEEDINGS OF DYNAMIC SYSTEMS AND APPLICATIONS, VOL 4, 2004, : 297 - 301
  • [7] Limit cycles of a lienard cubic system with quadratic friction function
    L. A. Cherkas
    I. N. Sidorenko
    Differential Equations, 2008, 44
  • [8] Limit cycles of a lienard cubic system with quadratic friction function
    Cherkas, L. A.
    Sidorenko, I. N.
    DIFFERENTIAL EQUATIONS, 2008, 44 (02) : 226 - 230
  • [9] UNIQUENESS OF LIMIT-CYCLES IN A LIENARD-TYPE SYSTEM
    HUANG, XC
    SUN, PT
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1994, 184 (02) : 348 - 359
  • [10] A note on ''uniqueness of limit cycles in a Lienard-type system''
    Kooij, RE
    Jianhua, SH
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1997, 208 (01) : 260 - 276