Adaptive Generation of Weakly Supervised Semantic Segmentation for Object Detection

被引:3
|
作者
Li, Shibao [1 ]
Liu, Yixuan [1 ]
Zhang, Yunwu [1 ]
Luo, Yi [1 ]
Liu, Jianhang [2 ]
机构
[1] China Univ Petr East China, Coll Ocean & Spatial Informat, 66 Changjiang West Rd, Qingdao 266400, Shandong, Peoples R China
[2] China Univ Petr East China, Coll Comp Sci & Technol, 66 Changjiang West Rd, Qingdao 266400, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
Object detection; Semantic segmentation; Weakly supervised;
D O I
10.1007/s11063-022-10902-w
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Object detection and semantic segmentation are the basic tasks of computer vision. Recently, the combination of object detection and semantic segmentation has made great progress. With the box-level weakly supervised semantic segmentation(WSSS) method, we predict segmentation based on feature maps extracted from object detector. Existing methods require both box-level and pixel-level annotations to train the shared backbone network simultaneously to get the bounding boxes and segmentation. However, in the absence of pixel-level annotations and without changing the parameters of network framework, object detectors can't predict semantic segmentation. We design a compact and plug-and-play object detection to semantic segmentation(O2S) module to enable object detectors to predict semantic masks, making full utilization of the training set and intermediate feature maps of object detection. We also propose a box-level weakly supervised probabilistic gap adaptive(PGA) method, which enables O2S to learn semantic masks from the training set of object detection. We evaluate the proposed approach on Pascal VOC 2007 and Pascal VOC 2012 and show its feasibility. With only 3.5 million parameters, the results of O2S trained with PGA are very close to the results of the whole networks trained with the WSSS methods. Our work has important implications for exploring the commonality of multiple visual tasks.
引用
收藏
页码:657 / 670
页数:14
相关论文
共 50 条
  • [31] A survey of semi- and weakly supervised semantic segmentation of images
    Man Zhang
    Yong Zhou
    Jiaqi Zhao
    Yiyun Man
    Bing Liu
    Rui Yao
    Artificial Intelligence Review, 2020, 53 : 4259 - 4288
  • [32] Context propagation embedding network for weakly supervised semantic segmentation
    Xu, Yajun
    Mao, Zhendong
    Chen, Zhineng
    Wen, Xin
    Li, Yangyang
    MULTIMEDIA TOOLS AND APPLICATIONS, 2020, 79 (45-46) : 33925 - 33942
  • [33] Class Activation Map Calibration for Weakly Supervised Semantic Segmentation
    Wang, Jian
    Dai, Tianhong
    Zhao, Xinqiao
    Garcia-Fernandez, Angel F.
    Lim, Eng Gee
    Xiao, Jimin
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (11) : 11668 - 11681
  • [34] Weakly supervised object localization and segmentation in videos
    Rochan, Mrigank
    Rahman, Shafin
    Bruce, Neil D. B.
    Wang, Yang
    IMAGE AND VISION COMPUTING, 2016, 56 : 1 - 12
  • [35] Patch-based weakly supervised semantic segmentation network for crack detection
    Dong, Zhiming
    Wang, Jiajun
    Cui, Bo
    Wang, Dong
    Wang, Xiaoling
    CONSTRUCTION AND BUILDING MATERIALS, 2020, 258
  • [36] Simultaneous Object Detection and Semantic Segmentation
    Salscheider, Niels Ole
    ICPRAM: PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION APPLICATIONS AND METHODS, 2020, : 555 - 561
  • [37] ASMWP: Adaptive spatial masking for weakly-supervised point cloud semantic segmentation
    Zhang, Xindan
    Li, Ying
    Zhang, Xinnian
    KNOWLEDGE-BASED SYSTEMS, 2025, 310
  • [38] Online Active Proposal Set Generation for weakly supervised object detection
    Jin, Ruibing
    Lin, Guosheng
    Wen, Changyun
    KNOWLEDGE-BASED SYSTEMS, 2022, 237
  • [39] Self-Guided Proposal Generation for Weakly Supervised Object Detection
    Cheng, Gong
    Xie, Xuan
    Chen, Weining
    Feng, Xiaoxu
    Yao, Xiwen
    Han, Junwei
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [40] Boat in the Sky: Background Decoupling and Object-aware Pooling for Weakly Supervised Semantic Segmentation
    Xu, Jianjun
    Xie, Hongtao
    Xu, Hai
    Wang, Yuxin
    Liu, Sun-ao
    Zhang, Yongdong
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2022, 2022, : 5783 - 5792