Adaptive Generation of Weakly Supervised Semantic Segmentation for Object Detection

被引:3
|
作者
Li, Shibao [1 ]
Liu, Yixuan [1 ]
Zhang, Yunwu [1 ]
Luo, Yi [1 ]
Liu, Jianhang [2 ]
机构
[1] China Univ Petr East China, Coll Ocean & Spatial Informat, 66 Changjiang West Rd, Qingdao 266400, Shandong, Peoples R China
[2] China Univ Petr East China, Coll Comp Sci & Technol, 66 Changjiang West Rd, Qingdao 266400, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
Object detection; Semantic segmentation; Weakly supervised;
D O I
10.1007/s11063-022-10902-w
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Object detection and semantic segmentation are the basic tasks of computer vision. Recently, the combination of object detection and semantic segmentation has made great progress. With the box-level weakly supervised semantic segmentation(WSSS) method, we predict segmentation based on feature maps extracted from object detector. Existing methods require both box-level and pixel-level annotations to train the shared backbone network simultaneously to get the bounding boxes and segmentation. However, in the absence of pixel-level annotations and without changing the parameters of network framework, object detectors can't predict semantic segmentation. We design a compact and plug-and-play object detection to semantic segmentation(O2S) module to enable object detectors to predict semantic masks, making full utilization of the training set and intermediate feature maps of object detection. We also propose a box-level weakly supervised probabilistic gap adaptive(PGA) method, which enables O2S to learn semantic masks from the training set of object detection. We evaluate the proposed approach on Pascal VOC 2007 and Pascal VOC 2012 and show its feasibility. With only 3.5 million parameters, the results of O2S trained with PGA are very close to the results of the whole networks trained with the WSSS methods. Our work has important implications for exploring the commonality of multiple visual tasks.
引用
收藏
页码:657 / 670
页数:14
相关论文
共 50 条
  • [1] Adaptive Generation of Weakly Supervised Semantic Segmentation for Object Detection
    Shibao Li
    Yixuan Liu
    Yunwu Zhang
    Yi Luo
    Jianhang Liu
    Neural Processing Letters, 2023, 55 : 657 - 670
  • [2] Background Activation Suppression for Weakly Supervised Object Localization and Semantic Segmentation
    Wei Zhai
    Pingyu Wu
    Kai Zhu
    Yang Cao
    Feng Wu
    Zheng-Jun Zha
    International Journal of Computer Vision, 2024, 132 (3) : 750 - 775
  • [3] Background Activation Suppression for Weakly Supervised Object Localization and Semantic Segmentation
    Zhai, Wei
    Wu, Pingyu
    Zhu, Kai
    Cao, Yang
    Wu, Feng
    Zha, Zheng-Jun
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2024, 132 (03) : 750 - 775
  • [4] Adaptive Patch Contrast for Weakly Supervised Semantic Segmentation
    Wu, Wangyu
    Dai, Tianhong
    Chen, Zhenhong
    Huang, Xiaowei
    Xiao, Jimin
    Ma, Fei
    Ouyang, Renrong
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2025, 139
  • [5] Explored seeds generation for weakly supervised semantic segmentation
    Terence Chow
    Haojin Deng
    Yimin Yang
    Zhiping Lin
    Huiping Zhuang
    Shan Du
    Neural Computing and Applications, 2024, 36 : 1007 - 1022
  • [6] Explored seeds generation for weakly supervised semantic segmentation
    Chow, Terence
    Deng, Haojin
    Yang, Yimin
    Lin, Zhiping
    Zhuang, Huiping
    Du, Shan
    NEURAL COMPUTING & APPLICATIONS, 2023, 36 (2): : 1007 - 1022
  • [7] Weakly Supervised Semantic Roadside Object Segmentation Using Digital Maps
    Guelen, Johannes A. P.
    Salah, Albert Ali
    Boom, Bastiaan J.
    Vijverberg, Julien A.
    2020 JOINT 9TH INTERNATIONAL CONFERENCE ON INFORMATICS, ELECTRONICS & VISION (ICIEV) AND 2020 4TH INTERNATIONAL CONFERENCE ON IMAGING, VISION & PATTERN RECOGNITION (ICIVPR), 2020,
  • [8] A Survey of Weakly -supervised Semantic Segmentation
    Zhu, Kaiyin
    Xiong, Neal N.
    Lu, Mingming
    2023 IEEE 9TH INTL CONFERENCE ON BIG DATA SECURITY ON CLOUD, BIGDATASECURITY, IEEE INTL CONFERENCE ON HIGH PERFORMANCE AND SMART COMPUTING, HPSC AND IEEE INTL CONFERENCE ON INTELLIGENT DATA AND SECURITY, IDS, 2023, : 10 - 15
  • [9] Attention-Based Dropout Layer for Weakly Supervised Single Object Localization and Semantic Segmentation
    Choe, Junsuk
    Lee, Seungho
    Shim, Hyunjung
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2021, 43 (12) : 4256 - 4271
  • [10] Weakly Supervised Video Object Segmentation
    Wang, Yufei
    Hu, Yongjiang
    Liew, Alan Wee-Chung
    Wang, Junhu
    PROCEEDINGS OF TENCON 2018 - 2018 IEEE REGION 10 CONFERENCE, 2018, : 0315 - 0320