Wiener index;
Total distance;
Harary index;
Zagred indices;
Eulerian graphs;
2-edge-connected graphs;
D O I:
10.1016/j.dam.2024.01.011
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
In the original article (Gutman et al., 2014), the authors state that the Wiener index (total distance) of an Eulerian graph is maximized by the cycle. We explain that the initial proof contains a flaw and note that it is a corollary of a result by Plesnik, since an Eulerian graph is 2 -edge -connected. The same incorrect proof is used in two referencing papers, (Liu et al., 2019) and (Cai et al., 2021). We give proofs of the main results of those papers and the 2 -edge -connected analogues. (c) 2024 Elsevier B.V. All rights reserved.
机构:
Huaiyin Inst Technol, Fac Math & Phys, Huaian 223003, Jiangsu, Peoples R ChinaHuaiyin Inst Technol, Fac Math & Phys, Huaian 223003, Jiangsu, Peoples R China
机构:
Hunan Normal Univ, Coll Math & Comp Sci, Changsha 410081, Hunan, Peoples R ChinaHunan Normal Univ, Coll Math & Comp Sci, Changsha 410081, Hunan, Peoples R China
Deng, Hanyuan
Krishnakumari, B.
论文数: 0引用数: 0
h-index: 0
机构:
SASTRA Univ, Sch Humanities & Sci, Dept Math, Thanjavur, IndiaHunan Normal Univ, Coll Math & Comp Sci, Changsha 410081, Hunan, Peoples R China
Krishnakumari, B.
Venkatakrishnan, Y. B.
论文数: 0引用数: 0
h-index: 0
机构:
SASTRA Univ, Sch Humanities & Sci, Dept Math, Thanjavur, IndiaHunan Normal Univ, Coll Math & Comp Sci, Changsha 410081, Hunan, Peoples R China
Venkatakrishnan, Y. B.
Balachandran, S.
论文数: 0引用数: 0
h-index: 0
机构:
SASTRA Univ, Sch Humanities & Sci, Dept Math, Thanjavur, IndiaHunan Normal Univ, Coll Math & Comp Sci, Changsha 410081, Hunan, Peoples R China
机构:
S China Normal Univ, Dept Math, Guangzhou 510631, Guangdong, Peoples R ChinaS China Normal Univ, Dept Math, Guangzhou 510631, Guangdong, Peoples R China
Zhou, Bo
Cai, Xiaochun
论文数: 0引用数: 0
h-index: 0
机构:
S China Normal Univ, Dept Math, Guangzhou 510631, Guangdong, Peoples R ChinaS China Normal Univ, Dept Math, Guangzhou 510631, Guangdong, Peoples R China
Cai, Xiaochun
Trinajstic, Nenad
论文数: 0引用数: 0
h-index: 0
机构:
Rudjer Boskovic Inst, Zagreb 10002, CroatiaS China Normal Univ, Dept Math, Guangzhou 510631, Guangdong, Peoples R China