Lie symmetry analysis, multiple exp-function method and conservation laws for the (2+1)-dimensional Boussinesq equation

被引:9
作者
Mbusi, S. O. [1 ]
Adem, A. R. [2 ]
Muatjetjeja, B. [1 ,3 ]
机构
[1] North West Univ, Dept Math Sci, Private Bag X 2046, ZA-2735 Mmabatho, South Africa
[2] Univ South Africa UNISA, Dept Math Sci, ZA-0003 Pretoria, South Africa
[3] Univ Botswana, Fac Sci, Dept Math, Private Bag 22, Gaborone, Botswana
关键词
Boussinesq equation; Conservation laws; Lie symmetry method; Multiple exp-function method; 02.30.Jr; 02.30.Ik; 02.70.Wz; 05.45.Yv; 47.10.ab; 47.35.Fg; 52.35.Sb; SOLITON-SOLUTIONS; BACKLUND TRANSFORMATION; WAVE;
D O I
10.1007/s11082-024-06339-1
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this study, we take into account the (2 + 1)-dimensional Boussinesq equation, a nonlinear evolution partial differential equation that describes how gravity waves move across the surface of the ocean. The symmetry reductions and group invariant precise solutions are systematically determined using the Lie symmetry analysis. We derive the precise multiple wave solutions using the multiple exp-function method, and then, using the multiplier method, we give the conservation laws. The dynamics of complicated waves and their interplay are faithfully recreated by the findings.
引用
收藏
页数:16
相关论文
共 56 条
[1]  
Ablowitz MJ., 1991, Solitons, Nonlinear Evolution Equation and Inverse Scattering, DOI 10.1017/CBO9780511623998
[3]  
Boussinesq J. V., 1877, Memoires presentes par divers savants a l'Academie des Sciences de l'Institut National de France, VXXIII, P55
[4]   Modified SEIAR infectious disease model for Omicron variants spread dynamics [J].
Cao, Feng ;
Lu, Xing ;
Zhou, Yi-Xuan ;
Cheng, Xi-Yu .
NONLINEAR DYNAMICS, 2023, 111 (15) :14597-14620
[5]   Dynamic behaviors of the lump solutions and mixed solutions to a (2+1)-dimensional nonlinear model [J].
Chen, Si-Jia ;
Lu, Xing ;
Yin, Yu-Hang .
COMMUNICATIONS IN THEORETICAL PHYSICS, 2023, 75 (05)
[6]   Elastic collision between one lump wave and multiple stripe waves of nonlinear evolution equations [J].
Chen, Si-Jia ;
Yin, Yu-Hang ;
Lu, Xing .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2024, 130
[7]   Wronskian solutions and linear superposition of rational solutions to B-type Kadomtsev-Petviashvili equation [J].
Chen, Yu ;
Lu, Xing .
PHYSICS OF FLUIDS, 2023, 35 (10)
[8]   Backlund transformation, Wronskian solutions and interaction solutions to the (3+1)-dimensional generalized breaking soliton equation [J].
Chen, Yu ;
Lu, Xing ;
Wang, Xiao-Li .
EUROPEAN PHYSICAL JOURNAL PLUS, 2023, 138 (06)
[9]   NEW SIMILARITY REDUCTIONS OF THE BOUSSINESQ EQUATION [J].
CLARKSON, PA ;
KRUSKAL, MD .
JOURNAL OF MATHEMATICAL PHYSICS, 1989, 30 (10) :2201-2213
[10]   A new modified Adomian decomposition method and its multistage form for solving nonlinear boundary value problems with Robin boundary conditions [J].
Duan, Jun-Sheng ;
Rach, Randolph ;
Wazwaz, Abdul-Majid ;
Chaolu, Temuer ;
Wang, Zhong .
APPLIED MATHEMATICAL MODELLING, 2013, 37 (20-21) :8687-8708