Certain Clean Decompositions for Matrices over Local Rings

被引:0
作者
Kurtulmaz, Yosum [1 ]
Kose, Handan [2 ]
Chen, Huanyin [3 ]
机构
[1] Bilkent Univ, Dept Math, Ankara, Turkiye
[2] Ahi Evran Univ, Dept Math, Kirsehir, Turkiye
[3] Fuzhou Univ Int Studies & Trade, Sch Big Data, Fuzhou 350202, Peoples R China
来源
KYUNGPOOK MATHEMATICAL JOURNAL | 2023年 / 63卷 / 04期
关键词
Strongly clean matrix; Strongly rad-clean matrix; Local ring; Power-series; SUM;
D O I
10.5666/KMJ.2023.63.4.561
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An element a E R is strongly rad-clean provided that there exists an idempotent e E R such that a -e E U(R), ae = ea and eae E J(eRe). In this article, we completely determine when a 2 x 2 matrix over a commutative local ring is strongly rad clean. An application to matrices over power-series is also given.
引用
收藏
页码:561 / 569
页数:9
相关论文
共 50 条
[41]   On weakly clean rings [J].
Kosan, Tamer ;
Sahinkaya, Serap ;
Zhou, Yiqiang .
COMMUNICATIONS IN ALGEBRA, 2017, 45 (08) :3494-3502
[42]   Rings Whose Clean Elements are Uniquely Clean [J].
Calugareanu, Grigore ;
Zhou, Yiqiang .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2023, 20 (01)
[43]   Enumeration of Quadrics of Projective Spaces over Local Rings [J].
Starikova, O. A. ;
Svistunova, A. V. .
RUSSIAN MATHEMATICS, 2011, 55 (12) :48-51
[44]   Quadratic forms and quadrics of space over local rings [J].
O. A. Starikova .
Journal of Mathematical Sciences, 2012, 187 (2) :177-186
[45]   Unifying strongly clean power series rings [J].
Diesl, Alexander J. ;
Shifflet, Daniel R. .
COMMUNICATIONS IN ALGEBRA, 2018, 46 (10) :4448-4462
[46]   Indecomposable and irreducible t-monomial matrices over commutative rings [J].
Bondarenko, Vitaliy M. ;
Bortos, Maria Yu. ;
Dinis, Ruslana F. ;
Tylyshchak, Alexander A. .
ALGEBRA & DISCRETE MATHEMATICS, 2016, 22 (01) :11-20
[47]   Pseudopolarity of Generalized Matrix Rings over a Local Ring [J].
Yin Xiao-bin ;
Dou Wan ;
Du Xian-kun .
CommunicationsinMathematicalResearch, 2015, 31 (03) :211-221
[48]   Polynomial growth of Betti sequences over local rings [J].
Avramov, Luchezar L. ;
Seceleanu, Alexandra ;
Yang, Zheng .
COLLECTANEA MATHEMATICA, 2024,
[49]   Constacyclic codes over local rings of order 16 [J].
Dougherty, Steven T. ;
Salturk, Esengul .
RINGS, MODULES AND CODES, 2019, 727 :93-105
[50]   Hermitian and skew hermitian forms over local rings [J].
Cruickshank, James ;
Quinlan, Rachel ;
Szechtman, Fernando .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2018, 551 :147-161