Triboelectric nanogenerator powered dielectric elastomer: Mechanism and applications

被引:3
|
作者
Wang, Dandan [1 ,2 ]
Liu, Zhaoqi [2 ,3 ]
Dong, Xuanyi [2 ,3 ]
Zhang, Dandan [1 ,2 ]
Chen, Xiangyu [2 ,3 ]
机构
[1] Beijing Informat Sci & Technol Univ, Sch Instrumentat Sci & Optoelect Engn, Beijing 100192, Peoples R China
[2] Chinese Acad Sci, Beijing Inst Nanoenergy & Nanosyst, CAS Ctr Excellence Nanosci, Beijing 100083, Peoples R China
[3] Univ Chinese Acad Sci, Sch Nanosci & Technol, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
Triboelectric nanogenerator; Dielectric elastomer; Mechanism; Applications; ACTUATOR;
D O I
10.1016/j.cplett.2023.140795
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Dielectric elastomer is a new kind of intelligent soft material, which deforms under strong external electric field. Dielectric elastomer has the characteristics of fast response, large deformation, high electromechanical conversion efficiency, low cost and light weight. It is widely used in optical systems, biomedical equipment, soft robots, energy harvesting and other fields. However, the driving voltage of dielectric elastomer actuator (DEA) exceeds 1000 V. The volume/weight and security risks of commercial high-voltage power supply limit the portability and wearability of the DEAs. Triboelectric nanogenerator (TENG) is an energy generation technique based on contact electrification, which can instantly generate a high voltage output reaching few thousands volts. Accordingly, TENG is a quite suitable solution for the power supply of DEA. In this paper, we reviewed the development of TENG powered dielectric elastomer actuator (TENG-DEA) in recent years. The mechanism, material structure and performance of diversified applications are summarized, while the challenges and prospects of this combined system are put forward. The summary and discussion in this review provide a good guidance for the sustainable development of TENG-DEA.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Self-powered environmental monitoring via a triboelectric nanogenerator
    Chang, Austin
    Uy, Cameron
    Xiao, Xiao
    Chen, Jun
    NANO ENERGY, 2022, 98
  • [32] Self-Powered Electrospinning System Driven by a Triboelectric Nanogenerator
    Li, Congju
    Yin, Yingying
    Wang, Bin
    Zhou, Tao
    Wang, Jiaona
    Luo, Jianjun
    Tang, Wei
    Cao, Ran
    Yuan, Zuqing
    Li, Nianwu
    Du, Xinyu
    Wang, Chunru
    Zhao, Shuyu
    Liu, Yuebo
    Wang, Zhong Lin
    ACS NANO, 2017, 11 (10) : 10439 - 10445
  • [33] Self-Powered Phase Transition Driven by Triboelectric Nanogenerator
    Ren, Lele
    Xiao, Junfeng
    Wang, Wei
    Yu, Aifang
    Zhang, Yufei
    Zhai, Junyi
    ACS APPLIED ELECTRONIC MATERIALS, 2023, 5 (05) : 2845 - 2852
  • [34] Self-powered pressure sensors based on triboelectric nanogenerator
    Xu, Mengfei
    Tao, Kai
    Chen, Zhensheng
    Chen, Hao
    IECON 2020: THE 46TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, 2020, : 3498 - 3501
  • [35] Self-powered artificial synapses actuated by triboelectric nanogenerator
    Liu, Yaqian
    Zhong, Jianfeng
    Li, Enlong
    Yang, Huihuang
    Wang, Xiumei
    Lai, Dengxiao
    Chen, Huipeng
    Guo, Tailiang
    NANO ENERGY, 2019, 60 : 377 - 384
  • [36] Biomechanical Energy Harvesting Triboelectric Nanogenerator As A Self Powered Sensor
    Charanya, Sukumaran
    Chandrasekhar, Arunkumar
    DAE SOLID STATE PHYSICS SYMPOSIUM 2019, 2020, 2265
  • [37] A paper triboelectric nanogenerator for self-powered electronic systems
    Mao, Yanchao
    Zhang, Nan
    Tang, Yingjie
    Wang, Meng
    Chao, Mingju
    Liang, Erjun
    NANOSCALE, 2017, 9 (38) : 14499 - 14505
  • [38] Self-Powered Humidity Sensor based on Triboelectric Nanogenerator
    Su, Yuanjie
    Xie, Guangzhong
    Wang, Si
    Tai, Huiling
    Zhang, Qiuping
    Du, Hongfei
    Du, Xiaosong
    Jiang, Yadong
    2017 IEEE SENSORS, 2017, : 1212 - 1214
  • [39] Advances and prospects of triboelectric nanogenerator for self-powered system
    An, Xuyao
    Wang, Chunnan
    Shao, Ruomei
    Sun, Shuqing
    INTERNATIONAL JOURNAL OF SMART AND NANO MATERIALS, 2021, 12 (03) : 233 - 255
  • [40] Vitrimer Elastomer-Based Jigsaw Puzzle-Like Healable Triboelectric Nanogenerator for Self-Powered Wearable Electronics
    Deng, Jianan
    Kuang, Xiao
    Liu, Ruiyuan
    Ding, Wenbo
    Wang, Aurelia C.
    Lai, Ying-Chih
    Dong, Kai
    Wen, Zhen
    Wang, Yaxian
    Wang, Lili
    Qi, H. Jerry
    Zhang, Tong
    Wang, Zhong Lin
    ADVANCED MATERIALS, 2018, 30 (14)