Learning trivializing flows

被引:6
作者
Albandea, D. [1 ]
Del Debbio, L. [2 ]
Hernandez, P. [1 ]
Kenway, R. [2 ]
MarshRossney, J. [2 ]
Ramos, A. [1 ]
机构
[1] Edificio Inst Invest, IFIC CSIC UVEG, Apt 22085, Valencia 46071, Spain
[2] Univ Edinburgh, Higgs Ctr Theoret Phys, Sch Phys & Astron, Edinburgh EH9 3FD, Scotland
来源
EUROPEAN PHYSICAL JOURNAL C | 2023年 / 83卷 / 07期
基金
欧盟地平线“2020”;
关键词
MONTE-CARLO-SIMULATION; ALGORITHM;
D O I
10.1140/epjc/s10052-023-11838-8
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
The recent introduction of machine learning techniques, especially normalizing flows, for the sampling of lattice gauge theories has shed some hope on improving the sampling efficiency of the traditional hybrid Monte Carlo (HMC) algorithm. In this work we study a modified HMC algorithm that draws on the seminal work on trivializing flows by L & uuml;scher. Autocorrelations are reduced by sampling from a simpler action that is related to the original action by an invertible mapping realised through Normalizing Flows models with a minimal set of training parameters. We test the algorithm in a f(4) theory in 2D where we observe reduced autocorrelation times compared with HMC, and demonstrate that the training can be done at small unphysical volumes and used in physical conditions. We also study the scaling of the algorithm towards the continuum limit under various assumptions on the network architecture.
引用
收藏
页数:14
相关论文
共 43 条
  • [1] Abbott R., 2022, Aspects of scaling and scalability for flow-based sampling of lattice QCD, ArXiv e-prints (2022b)
  • [2] Gauge-equivariant flow models for sampling in lattice field theories with pseudofermions
    Abbott, Ryan
    Albergo, Michael S.
    Boyda, Denis
    Cranmer, Kyle
    Hackett, Daniel C.
    Kanwar, Gurtej
    Racaniere, Sebastien
    Rezende, Danilo J.
    Romero-Lopez, Fernando
    Shanahan, Phiala E.
    Tian, Betsy
    Urban, Julian M.
    [J]. PHYSICAL REVIEW D, 2022, 106 (07)
  • [3] Albandea D, 2022, Arxiv, DOI arXiv:2211.12806
  • [4] Flow-based generative models for Markov chain Monte Carlo in lattice field theory
    Albergo, M. S.
    Kanwar, G.
    Shanahan, P. E.
    [J]. PHYSICAL REVIEW D, 2019, 100 (03)
  • [5] Flow-based sampling in the lattice Schwinger model at criticality
    Albergo, Michael S.
    Boyda, Denis
    Cranmer, Kyle
    Hackett, Daniel C.
    Kanwar, Gurtej
    Racaniere, Sebastien
    Rezende, Danilo J.
    Romero-Lopez, Fernando
    Shanahan, Phiala E.
    Urban, Julian M.
    [J]. PHYSICAL REVIEW D, 2022, 106 (01)
  • [6] Albergo MS, 2021, Arxiv, DOI arXiv:2101.08176
  • [7] Flow-based sampling for fermionic lattice field theories
    Albergo, Michael S.
    Kanwar, Gurtej
    Racaniere, Sebastien
    Rezende, Danilo J.
    Urban, Julian M.
    Boyda, Denis
    Cranmer, Kyle
    Hackett, Daniel C.
    Shanahan, Phiala E.
    [J]. PHYSICAL REVIEW D, 2021, 104 (11)
  • [8] Hybrid Monte Carlo and topological modes of full QCD
    Alles, B
    Boyd, G
    DElia, M
    DiGiacomo, A
    Vicari, E
    [J]. PHYSICS LETTERS B, 1996, 389 (01) : 107 - 111
  • [9] Bacchio S, 2022, Arxiv, DOI arXiv:2212.08469
  • [10] QCD4 from a five-dimensional point of view
    Baulieu, L
    Zwanziger, D
    [J]. NUCLEAR PHYSICS B, 2000, 581 (1-2) : 604 - 640