Resource-Efficient Synthetic Data Generation for Performance Evaluation in Mobile Edge Computing Over 5G Networks

被引:5
作者
Pandey, Chandrasen [1 ]
Tiwari, Vaibhav [1 ]
Rathore, Rajkumar Singh [2 ]
Jhaveri, Rutvij H. [3 ]
Roy, Diptendu Sinha [1 ]
Selvarajan, Shitharth [4 ]
机构
[1] Natl Inst Technol Meghalaya, Dept Comp Sci & Engn, Shillong 793003, India
[2] Cardiff Metropolitan Univ, Cardiff Sch Technol, Dept Comp Sci, Llandaff Campus, Cardiff CF5 2YB, Wales
[3] Pandit Deendayal Energy Univ, Sch Technol, Dept Comp Sci & Engn, Gandhinagar, India
[4] Kebri Dehar Univ, Dept Comp Sci, Kebri Dehar 3060, Ethiopia
来源
IEEE OPEN JOURNAL OF THE COMMUNICATIONS SOCIETY | 2023年 / 4卷
关键词
Generative adversarial network; 5G; mobile edge computing; synthetic data generation; resource efficiency; performance evaluation;
D O I
10.1109/OJCOMS.2023.3306039
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Mobile Edge Computing (MEC) in 5G networks has emerged as a promising technology to enable efficient and low-latency services for mobile users. In this paper, we present a novel synthetic data generation approach tailored for evaluating MEC in 5G networks. Our methodology incorporates resource-efficient techniques to generate realistic synthetic datasets that capture the spatio-temporal patterns of mobile traffic and user behavior. By leveraging advanced modeling techniques, including multi-head attention and bidirectional LSTM, we accurately model the complex dependencies in the data while optimizing computational resources. The proposed synthetic data generator enables the creation of diverse datasets that closely resemble real-world scenarios, facilitating the evaluation of MEC performance and optimizing resource utilization. Through extensive experiments and evaluations, we demonstrate the effectiveness of our approach in enabling accurate assessments of MEC in 5G networks. Our work contributes to the field by providing a robust methodology for synthetic data generation specifically tailored for MEC evaluation, addressing the need for resource-efficient evaluation frameworks in the context of emerging technologies. The results of our study provide valuable insights for the design and optimization of MEC systems in real-world deployments.
引用
收藏
页码:1866 / 1878
页数:13
相关论文
共 28 条
[1]   Mobile Edge Computing: A Survey [J].
Abbas, Nasir ;
Zhang, Yan ;
Taherkordi, Amir ;
Skeie, Tor .
IEEE INTERNET OF THINGS JOURNAL, 2018, 5 (01) :450-465
[2]  
Borkman S., 2021, arXiv
[3]   Guest Editorial Introduction to the Special Section on AI-Powered Internet of Everything (IoE) Services in Next-Generation Wireless Networks [J].
Brik, Bouziane ;
Dev, Kapal ;
Xiao, Yang ;
Han, Guangjie ;
Ksentini, Adlen .
IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2022, 9 (05) :2952-2954
[4]  
Chen XM, 2015, IEEE ICC, P3585, DOI 10.1109/ICC.2015.7248881
[5]   Next-generation deep learning based on simulators and synthetic data [J].
de Melo, Celso M. ;
Torralba, Antonio ;
Guibas, Leonidas ;
DiCarlo, James ;
Chellappa, Rama ;
Hodgins, Jessica .
TRENDS IN COGNITIVE SCIENCES, 2022, 26 (02) :174-187
[6]   DRIVE-B5G: A Flexible and Scalable Platform Testbed for B5G-V2X Networks [J].
Djaidja, Taki Eddine Toufik ;
Brik, Bouziane ;
Boualouache, Abdelwahab ;
Senouci, Sidi Mohammed ;
Ghamri-Doudane, Yacine .
2022 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM 2022), 2022, :2800-2805
[7]   A MEC-Based Architecture to Secure IoT Applications using Federated Deep Learning [J].
El Houda Z.A. ;
Brik B. ;
Ksentini A. ;
Khoukhi L. .
IEEE Internet of Things Magazine, 2023, 6 (01) :60-63
[8]  
Han ZY, 2023, IEEE INTERNET THINGS, V10, P18890, DOI [10.1109/JIOT.2023.3281942, 10.1109/TLT.2023.3257511]
[9]  
Hasan MK, 2022, IEEE T IND INFORM, V18, P8895, DOI [10.4018/IJTD.304381, 10.1109/TII.2022.3148250]
[10]   Generate, Annotate, and Learn: NLP with Synthetic Text [J].
He, Xuanli ;
Nassar, Islam ;
Kiros, Jamie ;
Haffari, Gholamreza ;
Norouzi, Mohammad .
TRANSACTIONS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, 2022, 10 :826-842