Hierarchical Semantic Contrast for Scene-aware Video Anomaly Detection

被引:42
作者
Sun, Shengyang [1 ]
Gong, Xiaojin [1 ]
机构
[1] Zhejiang Univ, Coll Informat Sci & Elect Engn, Hangzhou, Zhejiang, Peoples R China
来源
2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR) | 2023年
关键词
LOCALIZATION;
D O I
10.1109/CVPR52729.2023.02188
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Increasing scene-awareness is a key challenge in video anomaly detection (VAD). In this work, we propose a hierarchical semantic contrast (HSC) method to learn a sceneaware VAD model from normal videos. We first incorporate foreground object and background scene features with high-level semantics by taking advantage of pre-trained video parsing models. Then, building upon the autoencoder-based reconstruction framework, we introduce both scene-level and object-level contrastive learning to enforce the encoded latent features to be compact within the same semantic classes while being separable across different classes. This hierarchical semantic contrast strategy helps to deal with the diversity of normal patterns and also increases their discrimination ability. Moreover, for the sake of tackling rare normal activities, we design a skeleton-based motion augmentation to increase samples and refine the model further. Extensive experiments on three public datasets and scene-dependent mixture datasets validate the effectiveness of our proposed method.
引用
收藏
页码:22846 / 22856
页数:11
相关论文
共 78 条
[41]   Learning Normal Dynamics in Videos with Meta Prototype Network [J].
Lv, Hui ;
Chen, Chen ;
Cui, Zhen ;
Xu, Chunyan ;
Li, Yong ;
Yang, Jian .
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, :15420-15429
[42]   Graph Embedded Pose Clustering for Anomaly Detection [J].
Markovitz, Amir ;
Sharir, Gilad ;
Friedman, Itamar ;
Zelnik-Manor, Lihi ;
Avidan, Shai .
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2020), 2020, :10536-10544
[43]   Sample Fusion Network: An End-to-End Data Augmentation Network for Skeleton-Based Human Action Recognition [J].
Meng, Fanyang ;
Liu, Hong ;
Liang, Yongsheng ;
Tu, Juanhui ;
Liu, Mengyuan .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2019, 28 (11) :5281-5295
[44]   Learning Regularity in Skeleton Trajectories for Anomaly Detection in Videos [J].
Morais, Romero ;
Vuong Le ;
Truyen Tran ;
Saha, Budhaditya ;
Mansour, Moussa ;
Venkatesh, Svetha .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :11988-11996
[45]   Learning Memory-guided Normality for Anomaly Detection [J].
Park, Hyunjong ;
Noh, Jongyoun ;
Ham, Bumsub .
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2020), 2020, :14360-14369
[46]   A Survey of Single-Scene Video Anomaly Detection [J].
Ramachandra, Bharathkumar ;
Jones, Michael J. ;
Vatsavai, Ranga Raju .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (05) :2293-2312
[47]  
Ramachandra B, 2020, IEEE WINT CONF APPL, P2587, DOI 10.1109/WACV45572.2020.9093417
[48]   Training Adversarial Discriminators for Cross-channel Abnormal Event Detection in Crowds [J].
Ravanbakhsh, Mahdyar ;
Sangineto, Enver ;
Nabi, Moin ;
Sebe, Nicu .
2019 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2019, :1896-1904
[49]  
Redmon J, 2018, Arxiv, DOI [arXiv:1804.02767, 10.48550/arXiv.1804.02767]
[50]   Deep-Cascade: Cascading 3D Deep Neural Networks for Fast Anomaly Detection and Localization in Crowded Scenes [J].
Sabokrou, Mohammad ;
Fayyaz, Mohsen ;
Fathy, Mahmood ;
Klette, Reinhard .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2017, 26 (04) :1992-2004