Hierarchical Semantic Contrast for Scene-aware Video Anomaly Detection

被引:42
作者
Sun, Shengyang [1 ]
Gong, Xiaojin [1 ]
机构
[1] Zhejiang Univ, Coll Informat Sci & Elect Engn, Hangzhou, Zhejiang, Peoples R China
来源
2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR) | 2023年
关键词
LOCALIZATION;
D O I
10.1109/CVPR52729.2023.02188
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Increasing scene-awareness is a key challenge in video anomaly detection (VAD). In this work, we propose a hierarchical semantic contrast (HSC) method to learn a sceneaware VAD model from normal videos. We first incorporate foreground object and background scene features with high-level semantics by taking advantage of pre-trained video parsing models. Then, building upon the autoencoder-based reconstruction framework, we introduce both scene-level and object-level contrastive learning to enforce the encoded latent features to be compact within the same semantic classes while being separable across different classes. This hierarchical semantic contrast strategy helps to deal with the diversity of normal patterns and also increases their discrimination ability. Moreover, for the sake of tackling rare normal activities, we design a skeleton-based motion augmentation to increase samples and refine the model further. Extensive experiments on three public datasets and scene-dependent mixture datasets validate the effectiveness of our proposed method.
引用
收藏
页码:22846 / 22856
页数:11
相关论文
共 78 条
[1]  
[Anonymous], 2020, ACM MM, DOI DOI 10.1145/3394171.3413529
[2]  
[Anonymous], 2021, WACV, DOI DOI 10.1109/WACV48630.2021.00014
[3]  
[Anonymous], 2020, ACM MM, DOI DOI 10.1145/3394171.3413887
[4]  
[Anonymous], 2021, C COMP VIS PATT REC, DOI DOI 10.1109/CVPR46437.2021.01255
[5]  
[Anonymous], 2021, CVPR, DOI DOI 10.1109/TSMC.2019.2958072
[6]  
[Anonymous], 2021, C COMP VIS PATT REC, DOI DOI 10.1109/CVPR46437.2021.01379
[7]   Hierarchical Scene Normality-Binding Modeling for Anomaly Detection in Surveillance Videos [J].
Bao, Qianyue ;
Liu, Fang ;
Liu, Yang ;
Jiao, Licheng ;
Liu, Xu ;
Li, Lingling .
PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2022, 2022, :6103-6112
[8]  
Cai RC, 2021, AAAI CONF ARTIF INTE, V35, P938
[9]  
Cao Congqi, 2022, ARXIV220902899
[10]   Clustering Driven Deep Autoencoder for Video Anomaly Detection [J].
Chang, Yunpeng ;
Tu, Zhigang ;
Xie, Wei ;
Yuan, Junsong .
COMPUTER VISION - ECCV 2020, PT XV, 2020, 12360 :329-345