CFGN: A Lightweight Context Feature Guided Network for Image Super-Resolution

被引:12
作者
Dai, Tao [1 ]
Ya, Mengxi [2 ]
Li, Jinmin [2 ]
Zhang, Xinyi [2 ]
Xia, Shu-Tao [2 ]
Zhu, Zexuan [1 ]
机构
[1] Shenzhen Univ, Coll Comp Sci & Software Engn, Shenzhen 518060, Peoples R China
[2] Tsinghua Univ, Tsinghua Shenzhen Int Grad Sch, Shenzhen 518055, Peoples R China
来源
IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE | 2024年 / 8卷 / 01期
基金
中国国家自然科学基金;
关键词
Image super resolution; convolutional neural networks; feature aggregation;
D O I
10.1109/TETCI.2023.3289618
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Convolutional neural networks (CNNs) have recently been widely and successfully applied in the image computer vision community, and obtained great advances in single image super-resolution (SR). However, most of the existing SR methods focus on designing networks with deeper or wider structures for better performance and suffer from the problem of heavy computational costs. To address this problem, we propose a novel Context Feature Guided Network (CFGN), which is an efficient and effective lightweight SR method. Specifically, To capture semantic features effectively, we propose a novel block, called context feature guided convolution (CFGC), to capture more discriminative features while enlarging the receptive field. Moreover, we design a novel context feature guided group (CFGG) to exploit the multi-scale context information. Extensive experiments demonstrate the effectiveness of our method with a good trade-off between performance and computational efficiency, compared with the proposed method over the state-of-the-art lightweight SR methods.
引用
收藏
页码:855 / 865
页数:11
相关论文
共 44 条
[1]   Fast, Accurate, and Lightweight Super-Resolution with Cascading Residual Network [J].
Ahn, Namhyuk ;
Kang, Byungkon ;
Sohn, Kyung-Ah .
COMPUTER VISION - ECCV 2018, PT X, 2018, 11214 :256-272
[2]   Low-Complexity Single-Image Super-Resolution based on Nonnegative Neighbor Embedding [J].
Bevilacqua, Marco ;
Roumy, Aline ;
Guillemot, Christine ;
Morel, Marie-Line Alberi .
PROCEEDINGS OF THE BRITISH MACHINE VISION CONFERENCE 2012, 2012,
[3]   Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation [J].
Chen, Liang-Chieh ;
Zhu, Yukun ;
Papandreou, George ;
Schroff, Florian ;
Adam, Hartwig .
COMPUTER VISION - ECCV 2018, PT VII, 2018, 11211 :833-851
[4]   Second-order Attention Network for Single Image Super-Resolution [J].
Dai, Tao ;
Cai, Jianrui ;
Zhang, Yongbing ;
Xia, Shu-Tao ;
Zhang, Lei .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :11057-11066
[5]   Accelerating the Super-Resolution Convolutional Neural Network [J].
Dong, Chao ;
Loy, Chen Change ;
Tang, Xiaoou .
COMPUTER VISION - ECCV 2016, PT II, 2016, 9906 :391-407
[6]   Image Super-Resolution Using Deep Convolutional Networks [J].
Dong, Chao ;
Loy, Chen Change ;
He, Kaiming ;
Tang, Xiaoou .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2016, 38 (02) :295-307
[7]   Parameter-Free Similarity-Aware Attention Module for Medical Image Classification and Segmentation [J].
Du, Jie ;
Guan, Kai ;
Zhou, Yanhong ;
Li, Yuanman ;
Wang, Tianfu .
IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2023, 7 (03) :845-857
[8]   A Hybrid Network of CNN and Transformer for Lightweight Image Super-Resolution [J].
Fang, Jinsheng ;
Lin, Hanjiang ;
Chen, Xinyu ;
Zeng, Kun .
2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW 2022, 2022, :1102-1111
[9]  
Gao GW, 2022, AAAI CONF ARTIF INTE, P661
[10]   Deep Back-Projection Networks For Super-Resolution [J].
Haris, Muhammad ;
Shakhnarovich, Greg ;
Ukita, Norimichi .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :1664-1673