Numerical analysis of a strip-loaded silicon rich nitride-thin film lithium niobate hybrid waveguides

被引:2
作者
Meetei, Toijam Sunder [1 ]
Son, Seong-Jin [3 ]
Park, Byeongchan [1 ]
Lee, Yong-Tak [1 ]
Yu, Nan Ei [1 ,2 ]
机构
[1] Gwangju Inst Sci & Technol, Adv Photon Res Inst, Gwangju 61005, South Korea
[2] Gwangju Inst Sci & Technol, Res Ctr Photon Sci Technol, Gwangju 61005, South Korea
[3] Gwangju Inst Sci & Technol, Dept Phys & Photon Sci, Gwangju 61005, South Korea
基金
新加坡国家研究基金会;
关键词
silicon rich nitride; lithium niobate on insulator; hybrid waveguides; single-mode condition; REFRACTIVE-INDEX; COEFFICIENTS; EFFICIENCY; CONVERSION; PHOTONICS; LNOI;
D O I
10.1088/2040-8986/acb44b
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Hybrid integration of silicon rich nitride and lithium niobate on insulator (SRN-LNOI) is an emerging material platform for photonic integrated circuits (PIC). In this paper, we present a systematic numerical investigation of the mode properties of a strip-loaded SRN-LNOI hybrid waveguide at 1550 nm wavelength using the full-vectorial finite difference method. Considering the anisotropic nature of the lithium niobate (LN) crystal, the effective refractive indices of the transverse electric and transverse magnetic modes of strip-loaded SRN-LN hybrid waveguides were analyzed. The single-mode condition, zero-birefringence, effective mode area, and power distribution in terms of the geometrical parameters of the strip-loaded SRN-LN hybrid waveguide are discussed in detail. Furthermore, the optical power transmission in both straight and bent waveguides, as well as the different characteristics of the optical power confinement of the fundamental modes in the SRN and LN layers were analyzed. This study provides useful information for designing high-performance photonic devices on a hybrid SRN-LNOI platform for future PIC applications.
引用
收藏
页数:11
相关论文
共 40 条
[1]   Silicon Nitride in Silicon Photonics [J].
Blumenthal, Daniel J. ;
Heideman, Rene ;
Geuzebroek, Douwe ;
Leinse, Arne ;
Roeloffzen, Chris .
PROCEEDINGS OF THE IEEE, 2018, 106 (12) :2209-2231
[2]   Status and Potential of Lithium Niobate on Insulator (LNOI) for Photonic Integrated Circuits [J].
Boes, Andreas ;
Corcoran, Bill ;
Chang, Lin ;
Bowers, John ;
Mitchell, Arnan .
LASER & PHOTONICS REVIEWS, 2018, 12 (04)
[3]   Heterogeneous integration of lithium niobate and silicon nitride waveguides for wafer-scale photonic integrated circuits on silicon [J].
Chang, Lin ;
Pfeiffer, Martin H. P. ;
Volet, Nicolas ;
Zervas, Michael ;
Peters, Jon D. ;
Manganelli, Costanza L. ;
Stanton, Eric J. ;
Li, Yifei ;
Kippenberg, Tobias J. ;
Bowers, John E. .
OPTICS LETTERS, 2017, 42 (04) :803-806
[4]   Four-channel CWDM device on a thin-film lithium niobate platform using an angled multimode interferometer structure [J].
Chen, Gengxin ;
Ruan, Ziliang ;
Wang, Zong ;
Huang, Pucheng ;
Guo, Changjian ;
Dai, Daoxin ;
Chen, Kaixuan ;
Liu, Liu .
PHOTONICS RESEARCH, 2022, 10 (01) :8-13
[5]   Design and fabrication of high-performance multimode interferometer in lithium niobate thin film [J].
Chen, Guanyu ;
da Ng, Jun ;
Lin, Hong-Lin ;
Zhang, Gong ;
Gong, Xiao ;
Danner, Aaron J. .
OPTICS EXPRESS, 2021, 29 (10) :15689-15698
[6]   Fabrication of nanoscale lithium niobate waveguides for second-harmonic generation [J].
Geiss, Reinhard ;
Saravi, Sina ;
Sergeyev, Anton ;
Diziain, Severine ;
Setzpfandt, Frank ;
Schrempel, Frank ;
Grange, Rachel ;
Kley, Ernst-Bernhard ;
Tuennermann, Andreas ;
Pertsch, Thomas .
OPTICS LETTERS, 2015, 40 (12) :2715-2718
[7]   Plasma etching of proton-exchanged lithium niobate [J].
Hu, H. ;
Milenin, A. P. ;
Wehrspohn, R. B. ;
Hermann, H. ;
Sohler, W. .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2006, 24 (04) :1012-1015
[8]   High-performance and compact integrated photonics platform based on silicon rich nitride-lithium niobate on insulator [J].
Huang, Xingrui ;
Liu, Yang ;
Li, Zhiyong ;
Fan, Zhongchao ;
Han, Weihua .
APL PHOTONICS, 2021, 6 (11)
[9]   Silicon photonics [J].
Jalali, Bahrain ;
Fathpour, Sasan .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2006, 24 (12) :4600-4615
[10]  
Kim S S., 2021, FDE SOLVER ANAL MODE