Two unified families of bivariate Mittag-Leffler functions

被引:13
作者
Kurt, Cemaliye [1 ]
Fernandez, Arran [2 ]
Ozarslan, Mehmet Ali [2 ]
机构
[1] Final Int Univ, Fac Engn, Dept Comp Engn, Via Mersin 10, Kyrenia, Northern Cyprus, Turkey
[2] Eastern Mediterranean Univ, Fac Arts & Sci, Dept Math, Via Mersin 10, Famagusta, Northern Cyprus, Turkey
关键词
Mittag-Leffler functions; Bivariate Mittag-Leffler functions; Fractional integrals; Fractional derivatives; Abel equations; Fractional differential equations; INTEGRAL-EQUATION; POLYNOMIALS;
D O I
10.1016/j.amc.2022.127785
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The various bivariate Mittag-Leffler functions existing in the literature are gathered here into two broad families. Several different functions have been proposed in recent years as bivariate versions of the classical Mittag-Leffler function; we seek to unify this field of research by putting a clear structure on it. We use our general bivariate Mittag-Leffler functions to define fractional integral operators (which have a semigroup property) and corresponding fractional derivative operators (which act as left inverses and analytic con-tinuations). We also demonstrate how these functions and operators arise naturally from some fractional partial integro-differential equations of Riemann-Liouville type.(c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:25
相关论文
共 50 条
[41]   Multiple (multiindex) Mittag-Leffler functions and relations to generalized fractional calculus [J].
Kiryakova, VS .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2000, 118 (1-2) :241-259
[42]   Asymptotics for Hermite-Pade Approximants Associated with the Mittag-Leffler Functions [J].
Starovoitov, A. P. ;
Kechko, E. P. .
LOBACHEVSKII JOURNAL OF MATHEMATICS, 2020, 41 (11) :2295-2302
[43]   Taylor Series for the Mittag-Leffler Functions and Their Multi-Index Analogues [J].
Paneva-Konovska, Jordanka .
MATHEMATICS, 2022, 10 (22)
[44]   Properties of ψ-Mittag-Leffler fractional integrals [J].
Oliveira, D. S. .
RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2022, 71 (01) :233-246
[45]   A note on property of the Mittag-Leffler function [J].
Peng, Jigen ;
Li, Kexue .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 370 (02) :635-638
[46]   ON AN EXTENSION OF THE OPERATOR WITH MITTAG-LEFFLER KERNEL [J].
Al-Refai, Mohammed ;
Baleanu, Dumitru .
FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2022, 30 (05)
[47]   SUFFICIENT CONDITIONS OF SUBCLASSES OF SPIRAL-LIKE FUNCTIONS ASSOCIATED WITH MITTAG-LEFFLER FUNCTIONS [J].
Murugusundaramoorthy, Gangadharan ;
Bulboaca, Teodor .
KRAGUJEVAC JOURNAL OF MATHEMATICS, 2024, 48 (06) :921-934
[48]   On the analysis of fractional calculus operators with bivariate Mittag Leffler function in the kernel [J].
Elidemir, Ilkay Onbasi ;
Ozarslan, Mehmet Ali ;
Buranay, Suzan Cival .
JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2024, 70 (02) :1295-1323
[49]   A Comprehensive Study on the Zeros of the Two-Parameter Mittag-Leffler Function [J].
Abooali, Farnoosh ;
Akbarfam, Aliasghar Jodayree .
SAHAND COMMUNICATIONS IN MATHEMATICAL ANALYSIS, 2025, 22 (01) :1-23
[50]   A New Definition of Fractional Derivatives With Mittag-Leffler Kernel of Two Parameters [J].
Chinchole, S. M. ;
Bhadane, A. P. .
COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2022, 13 (01) :19-26