Two unified families of bivariate Mittag-Leffler functions

被引:13
作者
Kurt, Cemaliye [1 ]
Fernandez, Arran [2 ]
Ozarslan, Mehmet Ali [2 ]
机构
[1] Final Int Univ, Fac Engn, Dept Comp Engn, Via Mersin 10, Kyrenia, Northern Cyprus, Turkey
[2] Eastern Mediterranean Univ, Fac Arts & Sci, Dept Math, Via Mersin 10, Famagusta, Northern Cyprus, Turkey
关键词
Mittag-Leffler functions; Bivariate Mittag-Leffler functions; Fractional integrals; Fractional derivatives; Abel equations; Fractional differential equations; INTEGRAL-EQUATION; POLYNOMIALS;
D O I
10.1016/j.amc.2022.127785
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The various bivariate Mittag-Leffler functions existing in the literature are gathered here into two broad families. Several different functions have been proposed in recent years as bivariate versions of the classical Mittag-Leffler function; we seek to unify this field of research by putting a clear structure on it. We use our general bivariate Mittag-Leffler functions to define fractional integral operators (which have a semigroup property) and corresponding fractional derivative operators (which act as left inverses and analytic con-tinuations). We also demonstrate how these functions and operators arise naturally from some fractional partial integro-differential equations of Riemann-Liouville type.(c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:25
相关论文
共 50 条
[1]   A naturally emerging bivariate Mittag-Leffler function and associated fractional-calculus operators [J].
Fernandez, Arran ;
Kurt, Cemaliye ;
Ozarslan, Mehmet Ali .
COMPUTATIONAL & APPLIED MATHEMATICS, 2020, 39 (03)
[2]   On a Five-Parameter Mittag-Leffler Function and the Corresponding Bivariate Fractional Operators [J].
Ozarslan, Mehmet Ali ;
Fernandez, Arran .
FRACTAL AND FRACTIONAL, 2021, 5 (02)
[3]   On a certain bivariate Mittag-Leffler function analysed from a fractional-calculus point of view [J].
Kurt, Cemaliye ;
Ozarslan, Mehmet Ali ;
Fernandez, Arran .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (03) :2600-2620
[4]   Some properties of bivariate Mittag-Leffler function [J].
Shahwan, Mohannad J. S. ;
Bin-Saad, Maged G. ;
Al-Hashami, Abdulmalik .
JOURNAL OF ANALYSIS, 2023, 31 (03) :2063-2083
[5]   A naturally emerging bivariate Mittag-Leffler function and associated fractional-calculus operators [J].
Arran Fernandez ;
Cemaliye Kürt ;
Mehmet Ali Özarslan .
Computational and Applied Mathematics, 2020, 39
[6]   Some properties of bivariate Mittag-Leffler function [J].
Mohannad J. S. Shahwan ;
Maged G. Bin-Saad ;
Abdulmalik Al-Hashami .
The Journal of Analysis, 2023, 31 :2063-2083
[7]   On the fractional calculus of multivariate Mittag-Leffler functions [J].
Ozarslan, Mehmet Ali ;
Fernandez, Arran .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2022, 99 (02) :247-273
[8]   A note on asymptotic behaviour of Mittag-Leffler functions [J].
Wang, JinRong ;
Zhou, Yong ;
O'Regan, D. .
INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2018, 29 (02) :81-94
[9]   Mittag-Leffler functions and transmission lines [J].
Clarke, T ;
Achar, BNN ;
Hanneken, JW .
JOURNAL OF MOLECULAR LIQUIDS, 2004, 114 (1-3) :159-163
[10]   CONVERGENCE OF SERIES IN MITTAG-LEFFLER FUNCTIONS [J].
Paneva-Konovska, Jordanka .
COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2010, 63 (06) :815-822