Biological and chemical nitrification inhibitors exhibited different effects on soil gross N nitrification rate and N2O production: a 15N microcosm study

被引:6
作者
Lan, Ting [1 ,2 ]
Chen, Xiaofeng [1 ,2 ]
Liu, Shuang [1 ,2 ]
Zhou, Minghua [3 ]
Gao, Xuesong [1 ,2 ]
机构
[1] Sichuan Agr Univ, Coll Resources, Chengdu 611130, Sichuan, Peoples R China
[2] Minist Nat Resources, Key Lab Invest & Monitoring Protect & Utilizat Cul, Chengdu 611130, Sichuan, Peoples R China
[3] Chinese Acad Sci, Inst Mt Hazards & Environm, Key Lab Mt Surface Proc & Ecol Regulat, Chengdu 610041, Peoples R China
基金
中国国家自然科学基金;
关键词
Ammonia oxidizers; Gross N transformation rate; Mineralization; N-15 isotopic method; N management; NITROUS-OXIDE EMISSIONS; AMMONIA OXIDIZERS; 3,4-DIMETHYLPYRAZOLE PHOSPHATE; TRANSFORMATION RATES; AGRICULTURAL SOILS; DICYANDIAMIDE DCD; ABUNDANCE; NITRAPYRIN; GENES; AMOA;
D O I
10.1007/s11356-023-30638-x
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Nitrification inhibitors (NIs) are considered as an effective strategy for reducing nitrification rate and related environmental nitrogen (N) loss. However, whether plant-derived biological NIs had an advantage over chemical NIs in simultaneously inhibiting nitrification rate and N2O production remains unclear. Here, we conducted an aerobic N-15 microcosmic incubation experiment to compare the effects of a biological NI (methyl 3-(4-hydroxyphenyl) propionate, MHPP) with three chemical NIs, 2-chloro-6-(trichloromethyl) pyridine (nitrapyrin), dicyandiamide (DCD), and 3,4-dimethylpyrazole phosphate (DMPP) on (i) gross N mineralization and nitrification rate and (ii) the relative importance of nitrification and denitrification in N2O emission in a calcareous soil. The results showed that DMPP significantly inhibited m(_gross) rate (P < 0.05), whereas DCD, nitrapyrin, and MHPP only numerically inhibited it. Gross N nitrification (n(_gross)) rates were inhibited by 9.48% in the DCD treatment to 51.5% in the nitrapyrin treatment. Chemical NIs primarily affected the amoA gene abundance of ammonia-oxidizing bacteria (AOB), whereas biological NIs affected the amoA gene abundance of ammonia-oxidizing archaea (AOA) and AOB. AOB's community composition was more susceptible to NIs than AOA, and NIs mainly targeted Nitrosospira clusters of AOB. Chemical NIs of DCD, DMPP, and nitrapyrin proportionally reduced N2O production from nitrification and denitrification. However, the biological NI MHPP stimulated short-term N2O emission and increased the proportion of N2O from denitrification. Our findings showed that the influence of NIs on gross N mineralization rate (m(_gross)) was dependent on the NI type. MHPP exhibited a moderate n(_gross) inhibitory capacity compared with the three chemical NIs. The mechanisms of chemical and biological NIs inhibiting n(_gross) can be partly attributed to changes in the abundance and community of ammonia oxidizers. A more comprehensive evaluation is needed to determine whether biological NIs have advantages over chemical NIs in inhibiting greenhouse gas emissions.
引用
收藏
页码:116162 / 116174
页数:13
相关论文
共 65 条
[1]   Management and implications of using nitrification inhibitors to reduce nitrous oxide emissions from urine patches on grazed pasture soils - A review [J].
Adhikari, Kamal P. ;
Chibuike, Grace ;
Saggar, Surinder ;
Simon, Priscila L. ;
Luo, Jiafa ;
de Klein, Cecile A. M. .
SCIENCE OF THE TOTAL ENVIRONMENT, 2021, 791
[2]   Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2 [J].
Bolyen, Evan ;
Rideout, Jai Ram ;
Dillon, Matthew R. ;
Bokulich, NicholasA. ;
Abnet, Christian C. ;
Al-Ghalith, Gabriel A. ;
Alexander, Harriet ;
Alm, Eric J. ;
Arumugam, Manimozhiyan ;
Asnicar, Francesco ;
Bai, Yang ;
Bisanz, Jordan E. ;
Bittinger, Kyle ;
Brejnrod, Asker ;
Brislawn, Colin J. ;
Brown, C. Titus ;
Callahan, Benjamin J. ;
Caraballo-Rodriguez, Andres Mauricio ;
Chase, John ;
Cope, Emily K. ;
Da Silva, Ricardo ;
Diener, Christian ;
Dorrestein, Pieter C. ;
Douglas, Gavin M. ;
Durall, Daniel M. ;
Duvallet, Claire ;
Edwardson, Christian F. ;
Ernst, Madeleine ;
Estaki, Mehrbod ;
Fouquier, Jennifer ;
Gauglitz, Julia M. ;
Gibbons, Sean M. ;
Gibson, Deanna L. ;
Gonzalez, Antonio ;
Gorlick, Kestrel ;
Guo, Jiarong ;
Hillmann, Benjamin ;
Holmes, Susan ;
Holste, Hannes ;
Huttenhower, Curtis ;
Huttley, Gavin A. ;
Janssen, Stefan ;
Jarmusch, Alan K. ;
Jiang, Lingjing ;
Kaehler, Benjamin D. ;
Bin Kang, Kyo ;
Keefe, Christopher R. ;
Keim, Paul ;
Kelley, Scott T. ;
Knights, Dan .
NATURE BIOTECHNOLOGY, 2019, 37 (08) :852-857
[3]   Estimation of global NH3 volatilization loss from synthetic fertilizers and animal manure applied to arable lands and grasslands -: art. no. 1024 [J].
Bouwman, AF ;
Boumans, LJM ;
Batjes, NH .
GLOBAL BIOGEOCHEMICAL CYCLES, 2002, 16 (02)
[4]   Nitrous oxide emissions from soils: how well do we understand the processes and their controls? [J].
Butterbach-Bahl, Klaus ;
Baggs, Elizabeth M. ;
Dannenmann, Michael ;
Kiese, Ralf ;
Zechmeister-Boltenstern, Sophie .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2013, 368 (1621)
[5]   Urease and Nitrification Inhibitors-As Mitigation Tools for Greenhouse Gas Emissions in Sustainable Dairy Systems: A Review [J].
Byrne, Maria P. ;
Tobin, John T. ;
Forrestal, Patrick J. ;
Danaher, Martin ;
Nkwonta, Chikere G. ;
Richards, Karl ;
Cummins, Enda ;
Hogan, Sean A. ;
O'Callaghan, Tom F. .
SUSTAINABILITY, 2020, 12 (15)
[6]   Biological nitrification inhibition by Brachiaria grasses mitigates soil nitrous oxide emissions from bovine urine patches [J].
Byrnes, Ryan C. ;
Nunez, Jonathan ;
Arenas, Laura ;
Rao, Idupulapati ;
Trujillo, Catalina ;
Alvarez, Carolina ;
Arango, Jacobo ;
Rasche, Frank ;
Chirinda, Ngonidzashe .
SOIL BIOLOGY & BIOCHEMISTRY, 2017, 107 :156-163
[7]   Meta-analysis reveals ammonia-oxidizing bacteria respond more strongly to nitrogen addition than ammonia-oxidizing archaea [J].
Carey, Chelsea J. ;
Dove, Nicholas C. ;
Beman, J. Michael ;
Hart, Stephen C. ;
Aronson, Emma L. .
SOIL BIOLOGY & BIOCHEMISTRY, 2016, 99 :158-166
[8]   Nitrification inhibitors effectively target N2O-producing Nitrosospira spp. in tropical soil [J].
Cassman, Noriko A. ;
Soares, Johnny R. ;
Pijl, Agata ;
Lourenco, Kesia S. ;
van Veen, Johannes A. ;
Cantarella, Heitor ;
Kuramae, Eiko E. .
ENVIRONMENTAL MICROBIOLOGY, 2019, 21 (04) :1241-1254
[9]   Prospects of improving efficiency of fertiliser nitrogen in Australian agriculture: a review of enhanced efficiency fertilisers [J].
Chen, D. ;
Suter, H. ;
Islam, A. ;
Edis, R. ;
Freney, J. R. ;
Walker, C. N. .
AUSTRALIAN JOURNAL OF SOIL RESEARCH, 2008, 46 (04) :289-301
[10]   Nitrogen transformations in modern agriculture and the role of biological nitrification inhibition [J].
Coskun, Devrim ;
Britto, Dev T. ;
Shi, Weiming ;
Kronzucker, Herbert J. .
NATURE PLANTS, 2017, 3 (06)