Background-Aware Classification Activation Map for Weakly Supervised Object Localization

被引:13
作者
Zhu, Lei [1 ,2 ,3 ,4 ]
She, Qi [5 ]
Chen, Qian [1 ,2 ,3 ,4 ]
Meng, Xiangxi [6 ]
Geng, Mufeng [1 ,2 ,3 ,4 ]
Jin, Lujia [1 ,2 ,3 ,4 ]
Zhang, Yibao [6 ]
Ren, Qiushi [1 ,2 ,3 ,4 ]
Lu, Yanye [7 ,8 ,9 ]
机构
[1] Peking Univ, Peking Univ Hlth Sci Ctr, Inst Med Technol, Beijing 100191, Peoples R China
[2] Peking Univ, Dept Biomed Engn, Coll Future Technol, Beijing 100871, Peoples R China
[3] Peking Univ, Inst Biomed Engn, Shenzhen Grad Sch, Shenzhen 518055, Guangdong, Peoples R China
[4] Shenzhen Bay Lab, Shenzhen 5181071, Guangdong, Peoples R China
[5] ByteDance, ByteDance AI Lab, Beijing 100086, Peoples R China
[6] Peking Univ Canc Hosp & Inst, Key Lab Carcinogenesis & Translat Res, Minist Educ, Beijing 100142, Peoples R China
[7] Peking Univ, Peking Univ Hlth Sci Ctr, Inst Med Technol, Beijing 100191, Peoples R China
[8] Peking Univ, Natl Biomed Imaging Ctr, Beijing 100871, Peoples R China
[9] Peking Univ, Inst Biomed Engn, Shenzhen Grad Sch, Shenzhen 518055, Guangdong, Peoples R China
基金
北京市自然科学基金;
关键词
Object localization; weakly supervised learning; weakly supervised object localization; ANOMALY DETECTION; ROBUSTNESS; MODEL;
D O I
10.1109/TPAMI.2023.3309621
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Weakly supervised object localization (WSOL) relaxes the requirement of dense annotations for object localization by using image-level annotation to supervise the learning process. However, most WSOL methods only focus on forcing the object classifier to produce high activation score on object parts without considering the influence of background locations, causing excessive background activations and ill-pose background score searching. Based on this point, our work proposes a novel mechanism called the background-aware classification activation map (B-CAM) to add background awareness for WSOL training. Besides aggregating an object image-level feature for supervision, our B-CAM produces an additional background image-level feature to represent the pure-background sample. This additional feature can provide background cues for the object classifier to suppress the background activations on object localization maps. Moreover, our B-CAM also trained a background classifier with image-level annotation to produce adaptive background scores when determining the binary localization mask. Experiments indicate the effectiveness of the proposed B-CAM on four different types of WSOL benchmarks, including CUB-200, ILSVRC, OpenImages, and VOC2012 datasets.
引用
收藏
页码:14175 / 14191
页数:17
相关论文
共 125 条
  • [1] SLIC Superpixels Compared to State-of-the-Art Superpixel Methods
    Achanta, Radhakrishna
    Shaji, Appu
    Smith, Kevin
    Lucchi, Aurelien
    Fua, Pascal
    Suesstrunk, Sabine
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2012, 34 (11) : 2274 - 2281
  • [2] Alzantot M, 2018, 2018 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2018), P2890
  • [3] Truth Will Out: Departure-Based Process-Level Detection of Stealthy Attacks on Control Systems
    Aoudi, Wissam
    Iturbe, Mikel
    Almgren, Magnus
    [J]. PROCEEDINGS OF THE 2018 ACM SIGSAC CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY (CCS'18), 2018, : 817 - 831
  • [4] A survey of robot learning from demonstration
    Argall, Brenna D.
    Chernova, Sonia
    Veloso, Manuela
    Browning, Brett
    [J]. ROBOTICS AND AUTONOMOUS SYSTEMS, 2009, 57 (05) : 469 - 483
  • [5] Azzalini D., 2020, P 19 INT C AUT AG MU, P105, DOI DOI 10.5555/3398761.3398779
  • [6] A Minimally Supervised Approach Based on Variational Autoencoders for Anomaly Detection in Autonomous Robots
    Azzalini, Davide
    Bonali, Luca
    Amigoni, Francesco
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2021, 6 (02): : 2985 - 2992
  • [7] Where to Look?: Mining Complementary Image Regions for Weakly Supervised Object Localization
    Babar, Sadbhavana
    Das, Sukhendu
    [J]. 2021 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2021), 2021, : 1009 - 1018
  • [8] Weakly Supervised Object Localization via Transformer with Implicit Spatial Calibration
    Bai, Haotian
    Zhang, Ruimao
    Wang, Jiong
    Wan, Xiang
    [J]. COMPUTER VISION, ECCV 2022, PT IX, 2022, 13669 : 612 - 628
  • [9] AN INEQUALITY WITH APPLICATIONS TO STATISTICAL ESTIMATION FOR PROBABILISTIC FUNCTIONS OF MARKOV PROCESSES AND TO A MODEL FOR ECOLOGY
    BAUM, LE
    EAGON, JA
    [J]. BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1967, 73 (03) : 360 - &
  • [10] F-CAM: Full Resolution Class Activation Maps via Guided Parametric Upscaling
    Belharbi, Soufiane
    Sarraf, Aydin
    Pedersoli, Marco
    Ben Ayed, Ismail
    McCaffrey, Luke
    Granger, Eric
    [J]. 2022 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2022), 2022, : 3727 - 3736