Risk factors for 1-year allograft loss in pediatric heart transplant patients using machine learning: An analysis of the pediatric heart transplant society database

被引:1
作者
Wisotzkey, Bethany L. [1 ,10 ]
Jaeger, Byron [2 ]
Asante-Korang, Alfred [3 ]
Brickler, Molly [4 ]
Cantor, Ryan S. [5 ]
Everitt, Melanie D. [6 ]
Kirklin, James K. [5 ]
Koehl, Devin [5 ]
Mantell, Benjamin S. [7 ]
Thrush, Philip T. [8 ]
Kuhn, Micheal [9 ]
机构
[1] Univ Arizona, Phoenix Childrens Ctr Heart Care, Coll Med, Div Cardiol, Phoenix, AZ USA
[2] Wake Forest Univ, Bowman Gray Sch Med, Div Publ Hlth Sci, Biostat & Data Sci, Winston Salem, NC USA
[3] Johns Hopkins All Childrens Hosp, Div Cardiol, St Petersburg, FL USA
[4] Med Coll Wisconsin, Herma Heart Inst, Childrens Wisconsin, Dept Pediat,Sect Cardiol, Milwaukee, WI USA
[5] Kirklin Solut, Birmingham, AL USA
[6] Univ Colorado, Childrens Hosp Colorado, Div Cardiol, Aurora, CO USA
[7] Cincinnati Childrens Hosp Med Ctr, Dept Pediat, Div Pediat Cardiol, Cincinnati, OH USA
[8] Northwestern Univ, Ann & Robert H Lurie Childrens Hosp Chicago, Feinberg Sch Med, Div Cardiol, Chicago, IL USA
[9] Loma Linda Univ, Childrens Hosp & Med Ctr, Div Cardiol, Loma Linda, CA USA
[10] Univ Arizona, Phoenix Childrens Ctr Heart Care, Coll Med, Mech Circulatory Support Program,Heart Failure & T, 1919 East Thomas Rd,Main Tower, Phoenix, AZ 85016 USA
关键词
machine learning; pediatric heart transplant; INTERNATIONAL SOCIETY; PREDICTION; MORTALITY; SURVIVAL; REGISTRY; CHILDREN; CURVES; INDEX;
D O I
10.1111/petr.14612
中图分类号
R72 [儿科学];
学科分类号
100202 ;
摘要
BackgroundPediatric heart transplant patients are at greatest risk of allograft loss in the first year. We assessed whether machine learning could improve 1-year risk assessment using the Pediatric Heart Transplant Society database.MethodsPatients transplanted from 2010 to 2019 were included. The primary outcome was 1-year graft loss free survival. We developed a prediction model using cross-validation, by comparing Cox regression, gradient boosting, and random forests. The modeling strategy with the best discrimination and calibration was applied to fit a final prediction model. We used Shapley additive explanation (SHAP) values to perform variable selection and to estimate effect sizes and importance of individual variables when interpreting the final prediction model.ResultsCumulative incidence of graft loss or mortality was 7.6%. Random forests had favorable discrimination and calibration compared to Cox proportional hazards with a C-statistic (95% confidence interval [CI]) of 0.74 (0.72, 0.76) versus 0.71 (0.69, 0.73), and closer alignment between predicted and observed risk. SHAP values computed using the final prediction model indicated that the diagnosis of congenital heart disease (CHD) increased 1 year predicted risk of graft loss by 1.7 (i.e., from 7.6% to 9.3%), need for mechanical circulatory support increased predicted risk by 2, and single ventricle CHD increased predicted risk by 1.9. These three predictors, respectively, were also estimated to be the most important among the 15 predictors in the final model.ConclusionsRisk prediction models used to facilitate patient selection for pediatric heart transplant can be improved without loss of interpretability using machine learning. Data from children transplanted from 2010 to 2019 were analyzed using machine learning. Single ventricle congenital heart disease contributed most to overall risk in the first year, followed closely by mechanical circulatory support at the time of transplant and a history of cardiac surgery prior to being listed for transplant.image
引用
收藏
页数:9
相关论文
共 50 条
[31]   Pediatric Heart Transplant Recipients Bridged with Biventricular Assist Device Have Worse 1 Year Graft Survival [J].
Watanabe, Kae ;
Joong, Anna ;
Thrush, Philip T. ;
Srdanovic, Nina ;
Monge, Michael C. ;
Pahl, Elfriede .
ASAIO JOURNAL, 2021, 67 (12) :1329-1334
[32]   Outcome, incidence and risk factors for stroke after pediatric heart transplantation: An analysis of the International Society for Heart and Lung Transplantation Registry [J].
Morgan, Conall T. ;
Manlhiot, Cedric ;
McCrindle, Brian W. ;
Dipchand, Anne I. .
JOURNAL OF HEART AND LUNG TRANSPLANTATION, 2016, 35 (05) :597-602
[33]   Post-transplant outcomes in pediatric ventricular assist device patients: A PediMACS-Pediatric Heart Transplant Study linkage analysis [J].
Sutcliffe, David L. ;
Pruitt, Elizabeth ;
Cantor, Ryan S. ;
Godown, Justin ;
Lane, John ;
Turrentine, Mark W. ;
Law, Sabrina P. ;
Lantz, Jodie L. ;
Kirklin, James K. ;
Bernstein, Daniel ;
Blume, Elizabeth D. .
JOURNAL OF HEART AND LUNG TRANSPLANTATION, 2018, 37 (06) :715-722
[34]   Parental Acquisition of Echocardiographic Images in Pediatric Heart Transplant Patients Using a Handheld Device: A Pilot Telehealth Study [J].
Dykes, John C. ;
Kipps, Alaina K. ;
Chen, Angela ;
Nourse, Susan ;
Rosenthal, David N. ;
Tierney, Elif Seda Selamet .
JOURNAL OF THE AMERICAN SOCIETY OF ECHOCARDIOGRAPHY, 2019, 32 (03) :404-411
[35]   Improved Detection of Cardiac Allograft Vasculopathy A Multi-Institutional Analysis of Functional Parameters in Pediatric Heart Transplant Recipients [J].
Kindel, Steven J. ;
Law, Yuk M. ;
Chin, Clifford ;
Burch, Michael ;
Kirklin, James K. ;
Naftel, David C. ;
Pruitt, Elizabeth ;
Carboni, Michael P. ;
Arens, Anna ;
Atz, Andrew M. ;
Dreyer, William J. ;
Mahle, William T. ;
Pahl, Elfriede .
JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2015, 66 (05) :547-557
[36]   Outcomes in highly sensitized pediatric heart transplant patients using current management strategies [J].
Asante-Korang, Alfred ;
Amankwah, Ernest K. ;
Lopez-Cepero, Mayra ;
Ringewald, Jeremy ;
Carapellucci, Jennifer ;
Krasnopero, Diane ;
Berg, Alex ;
Quintessenza, James ;
Jacobs, Jeffrey P. .
JOURNAL OF HEART AND LUNG TRANSPLANTATION, 2015, 34 (02) :175-181
[37]   Human leukocyte antigen eplet mismatching is associated with increased risk of graft loss and rejection after pediatric heart transplant [J].
Albers, Erin L. ;
Friedland-Little, Joshua M. ;
Hong, Borah J. ;
Kemna, Mariska S. ;
Warner, Paul ;
Law, Yuk M. .
PEDIATRIC TRANSPLANTATION, 2022, 26 (01)
[38]   Pathological antibody-mediated rejection in pediatric heart transplant recipients: Immunologic risk factors, hemodynamic significance, and outcomes [J].
Hollander, Seth A. ;
Peng, David M. ;
Mills, Marcos ;
Berry, Gerald J. ;
Fedrigo, Marny ;
McElhinney, Doff B. ;
Almond, Christopher S. ;
Rosenthal, David N. .
PEDIATRIC TRANSPLANTATION, 2018, 22 (05)
[39]   Recurrent Mild Acute Rejections and Donor-specific Antibodies as Risk Factors for Cardiac Allograft Vasculopathy in a National Pediatric Heart Transplant Cohort [J].
Kaskinen, Anu K. ;
Tainio, Juuso ;
Pihkala, Jaana I. ;
Peraesaari, Juha P. ;
Lauronen, Jouni ;
Raissadati, Alireza ;
Merenmies, Jussi M. ;
Jalanko, Hannu J. ;
Jahnukainen, Timo .
TRANSPLANTATION DIRECT, 2023, 9 (10) :E1534
[40]   Predictors of 1-year mortality in heart transplant recipients: a systematic review and meta-analysis [J].
Foroutan, Farid ;
Alba, Ana Carolina ;
Guyatt, Gordon ;
Posada, Juan Duero ;
Hing, Nicholas Ng Fat ;
Arseneau, Erika ;
Meade, Maureen ;
Hanna, Steven ;
Badiwala, Mitesh ;
Ross, Heather .
HEART, 2018, 104 (02) :151-160